WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

статистичної стійкості дослідів, навести приклади виявлення статистичних закономірностей. При статистичному підході до введення ймовірності події класичну ймовірність можна одержати як наслідок властивості ймовірності суми подій. Слід сформувати в учнів розуміння того, що про ймовірності події ми говоримо у двох випадках:
а) при наявності великої кількості статистично стійких дослідів;
б) при наявності досліду з рівноможливими наслідками.
Для застосувань теорії ймовірностей дуже важливим є вивчення величин, що набувають різні значення в залежності від випадкових обставин, які не можна врахувати, тобто випадкові величини. Випадкову величину доцільно вводити як функцію від наслідків досліду. Слід сформувати в учнів розуміння змісту середніх показників. Вміння орієнтуватися в цих показниках допомагає людині приймати правильні рішення, адекватно сприймати інформацію, що надходить до нього. Статистичний характер навколишніх явищ не може бути розкритий без розуміння міри мінливості, тому виникає необхідність у кількісному оцінюванні розкиду статистичних даних.
7. У процесі вивчення теми "Об'єми та площі поверхонь геометричних фігур" повинні бути розглянуті різні методи обчислення об'ємів і площ поверхонь. Особливу увагу необхідно приділити методу розкладання, який має велике практичне значення. Його суть полягає в роздробленні тіла на частини, об'єми яких легко знайти або з них можна скласти тіло відомого об'єму. Використання аналогії між вимірюваннями площ плоских фігур і об'ємів сприятиме засвоєнню матеріалу учнями. В системі задач на обчислення об'ємів та площ поверхонь необхідно передбачити достатню кількість завдань, що потребують виконання вимірювань, а потім обчислення геометричних величин. Існують різні способи введення поняття площі поверхні тіла. Найбільш природним і придатним для всіх поверхонь, що розглядається в математиці і інтуїтивно зрозумілим для учнів, геометричне означення площі поверхні, що ґрунтується на понятті об'єму.
8. Перед початком вивчення теми "Інтеграл та його застосування" актуалізувати відповідні опорні знання: повторити поняття похідної, фізичний, геометричний зміст. Вивчення інтегрального числення зазвичай починається з розгляду сукупності первісних даної функції, які доцільно трактувати як розв'язок диференціального рівняння у? = f(x). Бажано поряд з цим рівнянням розглянути диференціальне рівняння y? = ky, яке широко використовується при опису багатьох процесів. Інтеграл можна вводити як приріст первісної на заданому відрізку чи як границю інтегральних сум. При будь-якому способі викладення матеріалу доцільно якомога раніше вводити формулу Ньютона - Лейбніца. Це дозволить:
- обчислювати визначені інтеграли з початку вивчення теми;
- доводити основні властивості інтеграла, не спираючись на інтегральні суми, що зекономить час та зусилля;
- урізноманітнити вправи на застосування визначеного інтеграла.
9. Тема "Геометричні тіла і поверхні" надає великі можливості для розвитку у учнів геометричної інтуїції, просторових уявлень, формування навиків геометричного моделювання. При її вивченні не можна обмежуватись розглядом невеликого числа фігур і розв'язком в основному задач на обчислення. При введенні видів тіл доцільно використовувати конструктивні означення, тобто визначення, в яких означуваний об'єкт будується, а не виділяється із деякої сукупності за допомогою характерних ознак. Конструктивні означення тіл сприймаються учнями легше, природніше. Конструктивні означення дозволяють встановити спільність між призмами і циліндрами, пірамідами і конусами, що дає переваги при вивченні їх властивостей, при знаходженні об'ємів тіл та площ їх поверхонь. Особливої уваги заслуговують завдання на побудову перерізів тіл.
Курс математики, призначений для профілів гуманітарного напрямку
сприяє:
- становленню загальної культури людини;
- формуванню уявлень про математику як одну з універсальних мов, створених для опису і дослідження дійсності;
повинен:
- враховувати роль образного мислення у процесі пізнання навколишнього світу;
- формувати логічне мислення засобами математики [42].
Розглянемо орієнтовне тематичне планування основного курсу математики для 10 - 11 профільних класів гуманітарного напрямку [За матеріалами мережі Інтернет]. Його розраховано на 210 години учбового часу відповідно до навчального плану для класів цього профілю. При розробці робочої програми слід виходити з часу, що виділяється на предмет в даному навчальному закладі. Орієнтовний тематичний план узгоджено з навчальними засобами, що орієнтовані на профільне навчання. Цим планом передбачається сумісне вивчення геометрії та алгебри і початків аналізу. Такий підхід дозволяє якнайкраще розподілити час на вивчення окремих тем, забезпечити природні, внутрішні та міжпредметні зв'язки.
Для теми "Прямі і площини в просторі" формулюється загальна мета її вивчання, наводяться основні вимоги до рівня її вивчення, її зміст, короткі методичні рекомендації та розроблений конспект уроку, що подано у додатку Б [20; 46; 3].
Основні вимоги до рівня навчання задаються шляхом переліку навичок, якими повинні оволодіти учні. Ці вимоги визначають обов'язковий мінімальний рівень оволодіння темою і спрямовані на діяльнісний підхід в навчанні.
Методичні рекомендації нададуть певну допомогу викладачам щодо розуміння особливостей математичної підготовки для класів даного профілю, а також при виборі різних методичних шляхів і методів викладу матеріалу.
Орієнтовний тематичний план.
Клас № Назва теми Орієнтовна кількість
годин на вивчення
матеріалу
1 2 3 4
10 1. Функції, їх властивості та графіки 16
2. Похідна та її застосування 24
3. Прямі та площини у просторі 30
4. Тригонометричні функції 22
Резерв часу та повторення 10
Загальна кількість годин 102
11 5. Степенева, показникова та
логарифмічна функції 20
6. Елементи теорії ймовірностей 14
7. Інтеграл та його застосування 14
8. Геометричні тіла та поверхні 20
9. Об'єми та площі поверхонь
геометричних тіл 24
Резерв часу та повторення 10
Загальна кількість годин 102
2.3. КУРС МАТЕМАТИКИ ДЛЯ КЛАСІВ ПРИРОДНИЧОГО ПРОФІЛЮ
Вчитель математики у процесі викладання математики має максимально враховувати профіль навчання. Розглянемо, у чому полягають особливості курсу математики природничо-наукового профілю.
Даний курс орієнтовано на учнів з науковим стилем мислення, які обрали для себе хімічний, біологічний, географічний та інші напрямки. Для цих областей науки математика відіграє роль апарата, спеціального засобу для вивчення закономірностей навколишнього світу. Зауважимо, що математизація відповідних наук стосується лише окремих їх областей, в основномунайбільш сучасних, тоді як інші області майже не використовують математичних знань. Тому даний курс має бути побудований з урахуванням того, що математика для учнів
Loading...

 
 

Цікаве