WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Формула суми n перших членів геометричної прогресії - Реферат

Формула суми n перших членів геометричної прогресії - Реферат


Реферат на тему:
Формула суми n перших членів геометричної прогресії
Мета - познайомити учнів з виведенням формули суми n перших членів геометричної прогресії; вчити учнів застосовувати одержані формули при розв'язанні задач.
Розвиваюча - розвивати творчу діяльність учнів, за допомогою розв'язування задач пошукового характеру і самостійного виведення учнями формул розвивати інтелектуальні якості особистості школярів такі як самостійність, гнучкість, узагальнення, формувати вміння чітко і ясно висловлювати свої думки.
Виховна: прищеплювати учням інтерес до предмету, розв'язування історичних задач, формувати вміння акуратно і грамотно виконувати математичні записи, складати таблиці.
Тип уроку: комбінований.
Обладнання: підручники, таблиці, роздатковий матеріалів.
Хід уроку.
І. Організація початку року.
Вчитель. Тема уроку. "Формула" суми n перших членів геометричної прогресії".
Вдумайтесь у формування теми, сформулюйте і назвіть проблеми, які на ваш погляд ми повинні розв'язати по цій темі.
Учня називають проблеми, а учитель коротко записує їх на дошці і обіцяє що на всі питання ми постараємось дати відповіді на цьому уроці.
- Які ще проблеми можна виділити?
- Проблеми:
- Навіщо потрібно вчити обчислювати суму n перших членів геометричної прогресії?
- Як виглядає формула суми n перших членів геометричної прогресії?
- Як вивести формули суми n перших членів геометричної прогресії?
- В чому подібність і відмінність у виведенні формул суми n перших членів арифметичної і геометричної прогресії?
ІІ. Актуалізація опорних знань.
Стародавня індійська легенда розказує, що коли цар Шерам дізнався про дивну гру в шахмати, він наказав покликати до себе її винахідника - вченого Сету. Цар пообіцяв нагородити бідного ученого, тим чим він бажає. Сету попросив у нагороду за свій винахід стільки пшеничних зерен, скільки поміщається, якщо на першу клітинку шахматної дошки покласти 1 зерно, на другу в 2 рази більше, на третю в 4 рази більше і т.д. до 64 клітинки. Цар здивувався такій скромності вченого і наказав слугам принести Сету мішок пшениці.
Слуги пішли, але виконати роботу вони не змогли. Як ви думаєте чому?
В цій задачі мова йде про сумування. Відомої нам, геометричної прогресії:
S64=1+2+22+23+24+25+...263
Обчислимо значення цієї суми.
ІІІ. Вивчення новогоматеріалу.
1. Групам дається 5 хв. на виконання завдання.
2. Групам виділяється частина дошки, на якій вони записують розв'язання. Якщо розв'язки аналогічні, то записати їх можна тільки одні із груп.
3. Обговорюються розв'язки і оформлення задач. Які розв'язки найкращі?
4. Учні записують у зошит:
Розв'язок:
S=1+2+22+23+24+25+...263
2S=2+22+23+24+25+...264
2S-S=(2+22+23+24+25+...264) - (1+2+22+23+24+25+...263);
S=264-1=18446744073709551615
Можна підрахувати, що маса такої кількості пшеничних зерен більше трильйона.
- Проаналізувавши розв'язування задачі виведіть формулу суми n перших членів цієї геометричної прогресії, якщо перший член цієї прогресії в1, n-й член прогресі вn, Sn - сума перших n членів.
1. Група дається 7 хв. на виконання завдання.
2. Учні виконують завдання у групах на картках. Картки здають.
3. Виведення записане на зворотній дошці і порівняти його зі своїм. Записати виведену формулу в таблицю.
- Ми одержимо формулу суми n перших членів геометричної прогресії:
Sn= , при q=1 і
Sn= nв1, при q=1
Учні виводять другу формулу самостійної у групах.
Підставивши в І рівнянні ф-лу n-го члена геометричної прогресії, одержимо другу формулу для обчислення суми n перших членів геометричної прогресії.
Порівняйте вивезення формули з правильним.
Заповнити таблицю: "Геометрична прогресія"
Означення Геометричною прогресією називається послідовність, кожен член якої дорівнює попередньому, помноженому на одне і теж число.
Рекурентна формула вn=вn-1q
Формула n-го члена вn=в1qn-1
Характеристична властивість Вn+1=
Загальний вигляд формули n-го члена
Формула суми n перших членів Sn= , q=1
ІV. Закріплення нового матеріалу.
Робота в статистичних парах.
Задача 1. Знайти суму шести перших членів геометричної прогресії .
Sn= ,
Задача 2. Знайти число членів геометричної прогресії, якщо Sn= 189,
В1=3, q= 2
189 = ; 1-2n+-63;
2n=64, 2n=26, n=6.
Вправа № 255 (б, г)
Вправа № 256 (б, в)
Вправа № 257 (в,г)
ІІІ. Домашнє завдання.
§ 61 Контрольні запитання 25 (стор. 275);
Вправа 2555 (а, в): 256 (а); 257 (а, б).
ІV. Підведення підсумків уроку.
Запитання до класу.
1. За якого формулою можна знайти суму n перших членів геометричної прогресії, якщо q=1?
2. Чомудорівнює, сума n перших членів геометричної прогресії, якщо q=1?
Loading...

 
 

Цікаве