WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Випуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції(пошукова робота) - Реферат

Випуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції(пошукова робота) - Реферат


Пошукова робота на тему:
Випуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції. Схема дослідження функції та побудова її графіка. Функція попиту.
План
" Випуклість і вгнутість графіка функції
" Точки перегину
" Асимптоти графіка функції
" Схема дослідження функції та побудова її графіка
" Гранична корисність і гранична норма заміщення
" Функція попиту
1. Опуклість і вгнутість кривих. Точка перегину
Нехай крива задана рівнянням , де - неперервна функція, що має неперервну похідну на деякому проміжку . Тоді в кожній точці такої кривої можна провести дотичну (ці криві ще називають гладкими кривими).
Візьмемо на кривій довільну точку , де , .
Означення. Якщо існує окіл точки такий, що для всіх відповідні точки кривої лежать над дотичною, проведеною до кривої в точці , то крива в точці називається вгнутою догори (рис. 6.15).
Означення. Якщо існує окіл точки такий, що для всіх відповідні точки кривої лежать під дотичною, проведеною до кривої в точці , то крива в точці називається вгнутою донизу (рис. 6.16).
Означення. Точка називається точкою перегину кривої, якщо існує окіл точки - такий, що для всіх крива вгнута по один бік, а для всіх - по другий бік (рис. 6.17, 6.18).
Рис.6.15. Рис.6.16
Якщо крива, задана рівнянням в кожній точці деякого проміжку вгнута догори, її називають вгнутою на цьому проміжку; якщо крива в кожній точці проміжку вгнута донизу, її називають опуклою на даному проміжку.
Не всяка крива має точку перегину. Так, криві, зображені на рис. 6.21, 6.22, точок перегину не мають. Іноді крива може мати тільки одну, а іноді кілька точок перегину, навіть нескінченну множину.
Поставимо задачу: знайти точки вгнутості кривої та точки перегину, якщо вони існують. Для цього доведемо теорему.
Теорема. Нехай крива задана рівнянням і нехай існує окіл точки такий, що функція
Рис.6.17 Рис.6.18 Рис.6.19 Рис.6.20
при кожному має похідні до другого порядку включно, причому в точці є неперервною функцією. Тоді, якщо , то крива в точці вгнута догори. Якщо , то крива в точці вгнута донизу.
З теореми випливає, що коли крива задана рівнянням , де - визначена і має неперервні похідні до другого порядку включно на деякому проміжку , і в кожній точці цього проміжку , то задана крива на цьому проміжку вгнута. Якщо , то задана крива на цьому проміжку опукла. Інакше, якщо при , то крива не має точок перегину. Отже точка може бути точкою перегину кривої, заданої рівнянням , якщо або в точці не існує, але існує.
Надалі розглядатимемо випадок, коли існує в усіх точках проміжку . Тоді корені рівняння можуть бути абсцисами точок перегину кривої. Те, що похідна другого порядку
дорівнює в даній точці нулю, є тільки необхідною умовою того, щоб була абсцисою точки перегину кривої, але не достатньою.
Для того, щоб знайти точки перегину кривої, заданої рівнянням , треба:
1) визначити від функції похідну другого порядку і прирівняти її до нуля . З коренів цього рівняння вибрати тільки дійсні корені і ті, які належать області існування функції;
2) в околі кожного вибраного таким чином кореня визначити знак похідної другого порядку спочатку при значеннях , менших від розглядуваного кореня, а потім при значеннях , більших за даний корінь. Якщо при переході через вибраний корінь похідна змінює знак, то точка є точкою перегину заданої кривої. Якщо при переході через знак похідної другого порядку не змінюється, то не є точкою перегину кривої.
Зокрема, якщо при переході через змінює знак "+" на "-", то крива при проходженні через точку перегину змінює відповідно свій вигляд із вгнутості на опуклість. Якщо при переході через змінює знак "-" на "+" , то крива при проходженні через точку перегину змінює відповідно свій вигляд з опуклості на вгнутість.
Приклад. Знайти інтервали вгнутості й опуклості та точки перегину кривої, заданої рівнянням
.
Р о з в ' я з о к. Знаходимо похідні першого та другого порядків: ; .
Прирівнюємо до нуля. Дістанемо рівняння
,
звідки знаходимо корені
Отже, в інтервалах похідна , а в інтервалі похідна . Тому в інтервалах крива вгнута, а в інтервалі - опукла. Точки є точки перегину кривої.
2. Асимптоти кривих
Нехай крива задана рівнянням , де є неперервною функцією на відрізку . Тоді задана крива всіма своїми точками знаходитиметься в замкненому прямокутнику , де є найбільше значення функції на відрізку .
Якщо функція задана на нескінченному проміжку або у випадку, коли проміжок скінчений, але містить точки розриву другого роду заданої функції, то криву не завжди можна розмістити в прямокутнику. Тоді крива або окремі її вітки йдуть в нескінченність. При цьому може трапитися так, що крива на нескінченності, "розпрямляючись", наближається до деякої прямої лінії (рис.6.21).
Означення. Пряма лінія називається асимптотою кривої , якщо відстань точки кривої до прямої прямує до нуля, коли точка по кривій рухається в нескінченність, тобто
.
Рис.6.21
Асимптоти розрізняють трьох типів: "горизонтальні" (паралельні осі ); "вертикальні" (паралельні осі ) і - "похилі".
Горизонтальні асимптоти мають рівняння , якщо ; вертикальні рівняння , якщо .
Розглянемо задачу про відшукування похилих асимптот графіка. Нехай пряма є похилою асимптотою графіка функції (рис. 6.23).
Із означення асимптоти
. (6.106)
Тоді
. (6.107)
Перетворимо останній вираз:
Ця різниця можлива, якщо
звідки
. (6.108)
Якщо існує і скінчена, то із (6.115)
. (6.109)
Для існування похилих асимптот необхідне існування (і скінченність) обох границь (6.108) і (6.109). При цьому можливі такі окремі випадки.
1. Обидві границі існують, скінченні і не залежать від знаку:
;
.
В цьому випадку пряма буде двосторонньою асимптотою графіка.
2. Обидві границі існують і при , і при , але
.
При цьому хоч би або .
У даному випадку графік має дві односторонні асимптоти: праву і ліву .
3. Обидві границі існують лише при :
Тут графік має лише праву асимптоту .
4. Обидві границі існують лише при :
У даному випадку графік має лише ліву асимптоту .
Приклад. Знайти асимптоти кривої
.
Р о з в ' я з о к. Знаходимо границю
.
Отже, .
Знаходимо границю
.
Значить, .
Графік функції має двосторонню асимптоту .
3. Загальна схема
Loading...

 
 

Цікаве