WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних(пошукова робота) - Реферат

Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних(пошукова робота) - Реферат


Пошукова робота на тему:
Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних.
План
" Основні теореми диференціального числення
" Теорема Ролля
" Теорема Лагранжа
" Теорема Коші
" Правило Лопіталя
" Формула Тейлора для многочлена
" Формула Тейлора для довільної функції
" Формула Тейлора для функції двох змінних
6.12. Основні теореми диференціального числення
У курсі математичного аналізу одне з центральних місць займають так звані теореми про середнє значення, до яких належать теореми Ролля, Лагранжа і Коші. В цих теоремах йдеться про те, що коли функція та її похідна першого порядку задовольняють певним умовам, то всередині інтервалу знайдеться точка, в якій функція має певні властивості (про ці властивості йдеться в теоремі). Тому й самі теореми називають теоремами про середнє.
6.12. 1. Теорема Ролля
Теорема. Нехай функція задовольняє умовам:
1) визначена і неперервна на відрізку :
2) диференційована в інтервалі ;
3) на кінцях відрізка набуває однакових значень: .
Тоді всередині інтервалу знайдеться хоча б одна точка в якій .
Д о в е д е н н я.
Випадок 1. Функція на відрізку є сталою:
.
Тоді , тобто в кожній точці похідна дорівнює нулю, а тому за точку можна взяти будь-яку точку інтервалу і для цієї точки теорема буде справедлива.
Випадок 2. Функція не є тотожною сталою на відрізку . Оскільки за умовою теореми не є неперервною, то вона на відрізку набуває найбільшого і найменшого значень. Позначимо найбільше значення через , а найменше - через . Зрозуміло, що в розглянутому випадку .
Через те, що , то хоча б одне з чисел або досягається функцією всередині інтервалу . Нехай, наприклад, число досягається функцією всередині інтервалу , тобто існує хоча б одна точка, позначимо її , в якій
.
Покажемо, що .
Справді, оскільки є найменше значення функції на відрізку , то це число буде найменшим і серед значень функції, які вона набуває для всіх з деякого досить малого околу точки . Позначимо цей окіл через .
Тоді для всіх справджуватимуться нерівності
при ,
при .
Розглянемо відношення , для якого справедливі нерівності
при ,
при ,
причому .
Перейдемо в цих нерівностях до границі, коли . Тоді границя відношення, яке стоїть в лівій частині нерівностей, існує і дорівнює похідній , тому
, .
Звідси випливає, що . Теорему доведено
З'ясуємо геометричний зміст теореми Ролля (рис.6.9):
1) графік функції є суцільна лінія ( - неперервна на відрізку);
2) крива, що є графіком функції, є гладкою кривою (крива називається гладкою, якщо в кожній її точці можна провести дотичну);
3) крайні точки графіка знаходяться на однаковій висоті від .
6.12. 2. Теорема Лагранжа
Теорема. Якщо функція : 1) задана і неперервна на відрізку ; 2) диференційована в інтервалі , то тоді всередині інтервалу знайдеться хоча б одна точка , в якій справджуються рівність
. (6.73)
Д о в е д е н н я. Розглянемо функцію
,
що задовольняє всім умовам теореми Ролля. Справді, на відрізку є неперервною (як різниця двох неперервних функцій), а всередині інтервалу має похідну
;
.
Отже, існує точка в якій або, що саме,
звідси
Теорему доведено.
Геометрична інтерпретація теореми Лагранжа. Нехай графік функції зображено на рис. 6.10. Відношення є кутовий коефіцієнт січної , а - кутовий коефіцієнт дотичної, проведеної до графіка функції в точці з абсцисою . Обидва кутові коефіцієнти однакові. Отже, дотична і січна паралельні. Тому висновок теореми Лагранжа можна сформулювати так: на дузі знайдеться хоча б одна точка, в якій дотична до кривої паралельна хорді .
Оскільки , то можемо записати:
.
Рис.6.19 Рис.6.10
Отже, рівність (6.73) можна записати в такому вигляді:
,
або
.
Зокрема, покладемо , одержимо рівність
.
Вираз, який стоїть у лівій частині останньої рівності, є не що інше, як приріст функції в точці . Отже, дістаємо формулу
. (6.74)
Формула (6.74) виражає точне значення приросту функції
в точці за будь-якого скінченого значення приросту аргументу і має назву формули скінчених приростів.
Наслідок 1. Якщо функція на проміжку має похідні і за будь-якого , то на даному проміжку є сталою.
Д о в е д е н н я. Візьмемо в проміжку дві довільні точки Тоді функція на відрізку задовольняє умовам теореми Лагранжа і справедливою є рівність
.
Проте при будь-якому , зокрема і при , дорівнює нулю. Тоді з попередньої нерівності випливає: , або .
Оскільки і - довільні точки проміжку і функція у цих точках набуває однакових значень, то є сталою.
Тепер ми можемо сформулювати такий критерій сталості диференційованої функції на заданому проміжку: для того, щоб диференційована на проміжку функція була сталою, необхідно і достатньо, щоб в кожній точці цього проміжку дорівнювала нулю.
Наслідок 2. Якщо функції і на проміжку мають похідні , і за будь-якого , то різниця між цими функціями є величина стала.
Д о в е д е н н я. Позначимо різницю через : .
Тоді функція на проміжку має похідну :
.
Проте , тому . Звідси випливає, що або, що те саме, .
6.12.3. Теорема Коші
Теорема. Нехай: 1) функції і задані і неперервні на відрізку ; 2) диференційовані в інтервалі ; 3) похідна всередині інтервалу не дорівнює нулю. Тоді всередині інтегралу знайдеться така точка , що має місце рівність
. (6.75)
6.13. Розкриття невизначеностей. Правило Лопіталя
Розглянемо невизначеність виду .
Теорема 1. Нехай
Loading...

 
 

Цікаве