WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Неперервність функції в точці і в області.Дії над неперервними функціями(пошукова робота) - Реферат

Неперервність функції в точці і в області.Дії над неперервними функціями(пошукова робота) - Реферат


Пошукова робота на тему:
Неперервність функції в точці і в області.Дії над неперервними функціями. Формулювання основних властивостей функцій, неперервних в замкнутій області. Точки розриву функції та їх класифікація. Павутинні моделі ринку.
План
" Неперервність функції в точці та в області.
" Дії над неперервними функціями.
" Основні властивості функцій, неперервних на відрізу, в обмеженій замкнутій області.
" Точки розриву та їх класифікація.
" Павутинні моделі ринку.
1. Неперервність функцій.
Розриви функції та їх класифікація
Означення 1. Функція називається неперервною в точці :
1) якщо функція , визначена в точці ;
2) якщо існує границя в точці ;
3) якщо границя функції дорівнює значенню функції в цій точці, тобто .
Разом всі ці умови є необхідними і достатніми для того, щоб функція була неперервною в точці . В дальшому будемо користуватися і таким означенням неперервності функції.
Означення 2. Функція називається неперервною в точці , якщо для будь-якого як завгодно малого числа існує таке число , що для всіх точок , які задовольняють нерівності , виконується нерівність .
На практиці при дослідженні функції на неперервність часто користуються означенням неперервності функції, яке базується на понятті приросту функції в точці.
Нехай функція визначена в усіх точках деякого проміжку . Візьмемо дві довільні точки з цього проміжку
і , де .
Тоді число називається приростом аргументу, а число - приростом функції в точці .
Нехай в деякій (відкритій) області задана функція двох змінних . Візьмемо довільну точку цієї області і надамо приросту , залишаючи значення незмінним.
При цьому функція одержить приріст
, який називається частковим приростом цієї функції за .
Аналогічно, вважаючи постійною і надаючи приросту , одержимо частинний приріст от функції за : .
Приріст
називається повним приростом функції в точці , відповідним приростfм і незалежних змінних.
Означення 3. Функція називається неперервною в точці , якщо
.
Легко бачити, що наведені означення неперервності функції в точці є еквівалентні між собою в тому розумінні, що коли функція неперервна в точці за яким-небудь одним означенням, то вона неперервна і за рештою означень та навпаки.
Будемо називати функцію неперервною в області (замкнутій чи незамкнутій), якщо вона неперервна в кожній її точці. При цьому неперервність в будь-якій граничній точці області визначається так: функція неперервна в граничній точці , якщо для будь-якого додатного числа існує число таке, що для всіх точок області , які задовольняють умові , виконується нерівність .
Спираючись на теореми про границі і на означення неперервності легко переконатися в такому.
Теорема. Сума, різниця, добуток і частка від ділення двох неперервних функцій також неперервна (для частки - за винятком тих значень аргументів, що перетворюють на нуль знаменник), тобто, якщо і неперервні в точці , то в цій точці будуть неперервними і функції
Неперервність складної функції, неперервність оберненої функції. Сформулюємо відповідні теореми для функції однієї змінної.
Нехай - деяка функція аргументу , а - деяка функція аргументу , при цьому область означення першої функції має спільну частину з областю значень другої функції. За цих умов на тій частині області значення функції , яка відповідає , буде означена складна функція .
Нехай в деякій точці функція неперервна функція аргументу , а у відповідній точці функція неперервна як функція аргументу . Інакше,
,
.
Тоді
,
що доводить теорему.
Теорема. Якщо функція неперервна в точці , а функція неперервна в точці , то й функція неперервна в точці .
Враховуючи можливість поширення доведеного твердження на будь-яке (означене) число накладання функціональних залежностей, можна сформулювати теорему.
Теорема. Якщо накладання будь-якого (означеного) числа неперервних функціональних залежностей приводить до складної функції, то вона буде неперервною функцією основного аргументу.
Сформулюємо теорему, яка дає достатні умови існування та неперервності оберненої функції.
Теорема. Якщо функція визначена на відрізку і є на цьому відрізку неперервною і зростаючою (спадною), то для цієї функції на відрізку існує обернена функція , яка на відрізку є також неперервною і зростаючою (спадною).
Неперервність основних елементарних функцій.
Користуючись означенням неперервності функцій, покажемо, наприклад, що функція неперервна в кожній точці числової осі.
Візьмемо довільну точку . Тоді для будь-якого числа повинно існувати таке число , що нерівність
виконується для всіх , що задовольнять нерівності .
Покажемо, що таке число існує. Для цього ліву частину нерівності запишемо у вигляді
Таким чином, для того щоб виконувалася нерівність
,
достатньо, щоб .
Поклавши , впевнюємося, що з нерівності випливає нерівність . Це й доводить неперервність функції у довільній точці числової осі.
Аналогічно розглядаючи кожну елементарну функцію, можна було б довести теорему .
Теорема. Кожна елементарна функція неперервна в кожній точці, в якій вона означена.
Класифікація розривів неперервності функції.
Означення. Точка називається точкою згущення множини , якщо в кожному її колі знаходиться хоча б одна точка, відмінна від .
Точка згущення може і належати області , але може і не належати їй. Очевидно, що всі внутрішні точки множини є точками згущення і при цьому належать . Граничні точки можуть бути точками згущення , а можуть і не бути (їх тоді називають ізольованими).
Означення. Кожна точка згущення області означення функції , що не є точкою неперервності, називається точкою розриву цієї функції.
Означення. Лінія площини аргументів , всі точки якої є точками розриву функції , називається лінією розриву цієї функції.
Приклади.
1. Початок координат є точкою розриву функції
.
Справді, областю існування є вся площина , крім точки . Точка є точкою згущення цієї області, але не є точкою неперервності , оскільки не має числового значення в точці ; крім того, функція не має границі при (довести).
2. Функція задана
Loading...

 
 

Цікаве