WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Множини і відношення - Курсова робота

Множини і відношення - Курсова робота

"парадокс цирульника": цирульник - це мешканець міста, який голить тих і тільки тих мешканців міста, які не голять самі себе. Проводячи міркування, аналогічні тим, що були зроблені в парадоксі Рассела, дійдемо висновку, що цирульник голить себе в тому і тільки в тому випадку, коли цирульник не голить сам себе.
А от парадокс, що був відомий самому автору теорії множин Г.Кантору. Розглянемо об'єднання всіх мислимих множин і позначимо його U. Тоді за теоремою 1.8 потужність множини (U) всіх підмножин множини U має більшу потужність, ніж сама множина U. Однак це парадоксально, оскільки за означенням множина є множиною, яка містить всі множини (зокрема, і множину (U) ).
Багато хто з математиків на початку ХХ ст. не надавали цим парадоксам особливого значення, оскільки в той час теорія множин була відносно новою галуззю математики і не зачіпала інтересів більшості математиків. Однак їхні більш відповідальні та проникливі колеги зрозуміли, що виявлені парадокси стосуються не тільки теорії множин і побудованих на ній розділів класичної математики, але мають безпосереднс відношення до логіки взагалі, тобто до головного інструменту математики.
Зокрема, парадокс Рассела може бути переформульований в термінах логіки і таким чином доданий до відомих з давніх часів логічних парадоксів (парадокса брехуна, парадокса всемогутньої істоти тощо).
Гостро постало питання про обгрунтування засад математики. На початку ХХ ст. виникли три основні напрямки досліджень з обгрунтування сучасної математики. Коротко подамо суть кожного з цих напрямків.
1. Логіцизм. Основною тезою логіцизму є положення, що першоосновою математики є логіка, а математика - це лише частина логіки. Тобто всі математичні істини складають власну підмножину множини всіх логічних істин.
Головні ідеї та методи логіцизму були вперше викладені у великій праці А.Уайтхеда і Б.Рассела "Принципи математики", яка вийшла на початку другого десятиріччя ХХ ст.
Незважаючи на те, що в рамках логіцизму проблема обгрунтування математики не була остаточно розв'язана, все ж було зроблено чимало для з'ясування деяких важливих сторін логічної структури математики.
2. Iнтуїціонізм. Основними засадами інтуїціонізму є такі принципи:
1) В основу математики кладеться поняття натурального числа, причому система натуральних чисел вважається інтуїтивно відомою.
2) Усі інші математичні об'єкти будуються на основі натуральних чисел суто конструктивно за допомогою скінченного числа застосувань скінченної кількості конкретних операцій.
Доведення існування математичного об'єкта зводиться до побудови конкретного алгоритму, тобто визнаються лише конструктивні доведення існування математичних об'єктів. Зокрема, не визнається доведення існування математичних об'єктів методом від супротивного.
3) Закон виключеного третього незастосований до нескінченних множин. (Закон виключеного третього - це логічна аксіома, за якою з двох тверджень "A" і "не A" тільки одне є істинним).
4) Визнається абстракція потенційної нескінченності і відкидається абстракція актуальної нескінченності.
Обгрунтування математики в рамках інтуіціонізму натрапляє на дві основні перешкоди: значну частину важливих розділів математики не вдається побудувати засобами інтуїціонізму, або ж така побудова має досить громіздкий і штучний вигляд, який не задовольняє переважну більшість як математиків-теоретиків, так і практиків.
Подальшим кроком у розвитку інтуїціонізму є конструктивний напрям (або конструктивізм), який розвивається на основі уточненого поняття алгоритму.
3. Формалізм. Засновником формалізму вважають Д.Гільберта. Цей напрям є дальшим поглибленням аксіоматичного методу в математиці. Основою будь-якої аксіоматичної теорії є список неозначуваних (первинних) понять і список аксіом, тобто положень, які приймаються за вихідні і істинність яких початково декларується. Додатково означаються логічні правила, за допомогою яких з одних тверджень (зокрема, з аксіом) дістають інші.
Гільберт і його послідовники вважали, що кожен розділ математики можна повністю формалізувати, тобто за допомогою формальних виразів (формул) подати всіаксіоми, а всі математичні (логічні) доведення звести до суто формальних перетворень над формулами.
Саме на основі ідей формалізму Е.Цермело у 1908 році побудував першу формальну аксіоматичну теорію множин (так звану систему Цермело-Френкеля, або ZF). Пізніше було запропоновано багато видозмін і вдосконалень ZF та інших аксіоматичних теорій множин.
Якщо проаналізувати всі парадокси теорії множин, то можна зробити висновок, що всі вони обумовлені необмеженим застосуванням так званого принципу абстракції (або принципу згортання), згідно з яким для будь-якої властивості P(x) існує відповідна множина елементів x, які мають властивість P(x). Якщо відкинути це припущення, то всі відомі парадокси теорії множин стають неможливими. Так з парадоксів Рассела і Кантора випливало б, що не існують множина множин, які не є елементами самих себе, і множина всіх множин.
В усіх існуючих аксіоматичних теоріях множин неможливість антиномій грунтується на обмеженнях принципу згортання.
?
СПИСОК ЛIТЕРАТУРИ
Глушков В.М., Цейтлин Г.Е., Ющенко Е.Л. Алгебра, языки, программирование.- Киев, 1974.
Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера.- 2-е изд., перераб. и доп.- М., 1988.
Кук Д., Бейз Г. Компьютерная математика.- М.,1990.
Калужнин Л.А. Введение в общую алгебру.- М.,1973.
Столл Р.Р. Множества. Логика. Аксиоматические теории.- М.,1968.
Шрейдер Ю.А. Равенство, сходство, порядок.- М.,1971.
Шиханович Ю.А. Введение в современную математику.- М.,1965.
Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов.- М.,1975.
?
З М I С Т
1. Коротка iсторична довiдка ................................................. 1
2. Поняття множини. Способи задання множин ............... 1
3. Пiдмножини ........................................................................ 3
4. Операцiї над множинами та їхнi властивостi ................. 4
5. Декартiв (прямий) добуток множин ................................ 6
6. Вiдповiдностi, функцiї i вiдображення ............................ 8
7. Рiвнопотужнiсть множин .................................................. 11
8. Злiченнi множини .............................................................. 14
9. Незлiченнi множини .......................................................... 17
10. Кардинальнi числа ........................................................... 20
11. Вiдношення. Властивостi вiдношень ............................. 23
12. Вiдношення еквiвалентностi ........................................... 26
13. Вiдношення порядку ........................................................ 27
14. Решiтки .............................................................................. 31
15. Парадокси теорiї множин ................................................ 33
Список лiтератури ............................................................... 36
Loading...

 
 

Цікаве