WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМенеджмент → Математичні моделі й методи обгрунтування управлінських рішень, сфери їх використання в управлінській діяльності - Курсова робота

Математичні моделі й методи обгрунтування управлінських рішень, сфери їх використання в управлінській діяльності - Курсова робота

керівництво в стані легко уявити собі ланцюги проходження команд і формальну залежність між індивідами та діяльністю. Така аналогова модель звичайно більш простий і ефективний спосіб сприйняття і прояву складних взаємозв'язків структури великої організації, ніж, припустимо, складання переліку взаємозв'язків всіх робітників. Інший приклад аналогової моделі - графік, що показує залежність, між кількістю виробленої фарби та витратами з розрахунку на 1 галон) (див. рис. 3).
2,70
2,60
2,50
2,40
2,30
2,20
2,10
2,00
1000 2000 3000 4000 5000 6000 7000
Рис.3 - Аналогова модель.
[5, c.225].
Даний графік, що ілюструє саме аналогову модель, показує яким чином рівень виробництва на підприємстві впливає на витрати.
Іншими за класифікацією йдутьматематичні моделі. Але оскільки це безпосередньо пов'язано з темою даної роботи, то про математичні моделі більш детально буде викладено у відповідному розділі курсової роботи.
2. Математичні моделі і методи прийняття рішень.
Епоха застосування математичних моделей прийняття управлінських рішень розпочалася після 2-ї світової війни. Поява та розповсюдження ЕОМ зробило можливим використання математичних моделей для рішення економічних задач, починаючи від перевезення одного продукту в масштабах району і закінчуючи моделюванням національної економіки. Починають розроблятися моделі міст, ринків , війн, так звані глобальні моделі розвитку всесвіту. Якщо модель побудована і її створювачі вірять в її адекватність, то вона використовується для вирішення різних задач - прогнозування, прийняття простих і складних рішень. Як правило, застосування математичних моделей пов'язане з використанням ОЕМ. Математичні моделі в теперішній час претендують на роль універсального засобу вирішення будь-яких проблем.
В математичній моделі, яку інколи називають символічною, викоритовуються символи для описання властивостей або характеристик об'єкту чи події. Приклад математичної моделі і її аналітичної сили як засобу, що допомагає нам зрозуміти виключно складні проблеми, - відома формула Ейнштейна E=mc2 . Якби Ейнштейн не зміг побудувати цю математичну модель, в якій символи замінюють реальність, малоймовірно, щоб у фізиків з'явилася навіть віддалена ідея про взаємозв'язок матерії та енергії. Математичні моделі відносяться до типу моделей, що найчастіше використовуються при прийнятті організаційних рішень [5, с.226].
Для кращого розуміння сутності економічних моделей, я зроблю деталізований огляд основних серед них з наведенням конкретних прикладів та малюнків.
Як вже зазначалось вище, модель задачі прийняття рішень зводиться до знаходження оптимуму. Серед оптимізаційних задач дуже відомими є задачі лінійного програмування. Задачами лінійного програмування являються такі оптимізаційні задачі, в котрих цільова функція і функціональні обмеження - лінійні функції, що приймають будь-які значення з деякої множини значень. Стандартна задача лінійного програмування записується у вигляді:
(I)
В задачі лінійного програмування нестрогі функціональні нерівності можна перетворити в строгі рівності, прибавивши невідомі невід'ємні додаткові змінні. Звичайно, число невідомих і число рівнянь в системі може бути різним. Але й в цьому випадку для системи рівнянь відомі можливі варіанти: система може бути несумісною, тобто не мати рішень взагалі; рішення може бути одне, але (!) це єдине рішення може виявитися неприпустимим з-за наявності від'ємних компонент в рішенні; рішень може бути нескінченно багато. Взагалі для єдиності рішення задачі лінійного програмування не вимагається рівності числа змінних та числа обмежень. Для задач лінійного програмування розроблені багаточисельні ефективні методи вирішення і відповідне математичне забезпечення для різноманітних ситуацій [8, с.22].
" Приклад.
Невелика сімейна фірма виробляє два широкопопулярних безалкогольних напої - "Pink Fuzz" та "Mint Pop". Фірма може продати всю продукцію, котра буде вироблена, однак обсяг виробництва обмежений кількістю основного інгридієнту та виробничою потужністю обладнання. Для виробництва 1 л "Pink Fizz" потрібно 0,02 години роботи обладнання, а для виробництва 1 л "Mint Pop" - 0,04 години. Витрати спеціального інгридієнту складають 0,01 і 0,04 кг на 1 л "Pink Fizz" і "Mint Pop" відповідно. Щоденно в розпорядженні фірми мається 24 години часу роботи обладнання та 16 кг спеціального інгридієнту. Доход фірми складає 0,10 у.о. за 1 л "Pink Fizz" і 0,30 у.о. за 1 л "Mint Pop". Скільки продукції кожного виду слід виробляти щоденно, якщо мета фірми - максимізація щоденного доходу?
Рішення.
Крок 1. Визначення змінних. В рамках заданих обмежень фірма повинна прийняти рішення про те, яку кількість кожного виду напоїв слід випускати. Нехай р - число літрів "Pink Fizz", що виробляється за день. Нехай m - число літрів "Mint Pop", що виробляється за день.
Крок 2. Визначення цілі та обмежень. Ціль полянає в максимізації щоденного доходу. Нехай Р - щоденний доход, у.о. Він максимізується в рамках обмежень на кількість годин роботи обдаднанняі наявності спеціального інгридієнту.
Крок 3. Виразимо ціль через змінні:
Р = 0,10 р + 0,30 m (у.о. в день).
Це є цільова функція задачі - кількісне співвідношення, що підлягає оптимізації.
Крок 4. Виразимо обмеження через змінні. Існують такі обмеження на виробничий процес:
А) Час роботи обладнання. Виробництво р літрів "Pink Fizz" і m літрів "Mint Pop" потребує (0,02 р + 0,04 m) годин щоденно. Максимальний час роботи обладнання складає 24 год в день. Таким чином: 0,01 р + 0,04 m 24 год/день
Б) Спеціальний інгридієнт. Виробництво р літрів "Pink Fizz" і m літрів "Mint Pop" потребує (0,01 р + 0,04 m) 16 кг/день.
Інших обмежень не має, але розумно передбачити, що фірма не може виробляти напої у від'ємних кількостях , тому:
р 0, m 0.
Кінцеве формулювання задачі лінійного програмування має наступний вигляд. Максимізувати:
Р = 0,10 р + 0,30 m (у.о. в день).
при обмеженнях:
час роботи обладнання: 0,01 р + 0,04 m 24 год/день
спеціальний інгридієнт: 0,01 р + 0,04 m 16 кг/день.
р, m 0. (3, с.402).
Різновидом задач лінійного програмування є транспортні задачі. Нехай потрібно перевезти деяку кількість одиниць однорідного товару з різних складів в декілька магазинів. Приймемо слідуючі позначення: k - число складів, n - число магазинів, аі - кількість товару на і-ому складі, bj - кількість товару, необхідного j-ому магазину, xij - кількість одиниць товару, що перевозиться з і-го складу в j-ий магазин. Передбачається, що a1 + … + ak = b1 + …bn і
Loading...

 
 

Цікаве