WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаІнформатика, Компютерні науки → Тригонометричні ефемериди планет Сонячної системи - Курсова робота

Тригонометричні ефемериди планет Сонячної системи - Курсова робота

формулі:
N=365 * G + 30 * (M-1) + D
де - G, M, D - рік, місяць, день дати.
Найбільші складності в удосконалені цієї формули створює лютий. Для високосних років,починаючи з 1 березня , потрібно враховувати додатковий день. Якби лютий був останнім місяцем року, то по крайній мірі, ця складність зникла б. Тому в календарних розрахунках місяць і рік доцільно перенумерувати: березень буде першим місяцем року і т.д., а січень і лютий одинадцятим і дванадцятим місяцями попереднього року.
Алгоритм присвоєння номера дня в рамках Григоріанського календаря буде
таким:
S:= int ( 12 - M /10 );
M:= 12 * S + M - 2 ;
G:= G - S ;
N:= 365 * G + int (G/4) - int (G/100) + int (G/400) + int (30.59 * M ) + D - 30 ;
спростимо : об'єднаємо перші два члена до int ( 365.25 * G ).
Для дат з 1900 по 2099 роки вираз N спрощується за рахунок того, що сума тре-
тього і четвертого членів за цей час не міняється і дорівнює -15. Так як в нуме-
рації дат числа -15 і -30 тільки посувають номера всіх дат на одне і теж число,
то в розрахунках їх можна не враховувати. Щоб номера дат для і ст. не
були занадто великими з номера року віднімемо 1900, тоді:
N:= int ( 365.25 * ( G - 1900 ) + int ( 30.59* M ) + D ; (1)
Оскільки за цією формулою 9 січня 1990 р. Має значення N:=32852, то ми вводи-
мо його як константу точки відліку часу.
Тепер розберемося з простором. Просторове положення планети відносно Сонця задається елементами орбіти. Елементи орбіти - величини, які характеризують розміщення орбіти небесного тіла в просторі, її розміри, форму, а також положення тіла на орбіті. За початок відліку координат беруть точку весняного рівнодення - точку небесного екватора, через яку центр диска Сонця 20(21) березня переходить з Південної півкулі неба в Північну.
Якщо дивитися з полюса орбіти, з якого рух тіла відбувається проти руху стрілки годинника, то точку перетину площини орбіти з площиною екліптики ( площина орбіти Землі ), в якій орбіта піднімається над площиною екліптики - називають висхідним вузлом. Дугу від точки весняного рівнодення по великому колі екліптики до вузла - називають довготою висхідного вузла ( , Aie ).
Дугу від точки весняного рівнодення до точки перигелію планети ( найменша
відстань до Сонця ) - називають довготою перигелію Aap.
Розміри і форму орбіти визначають за рівнянням орбіти в полярних координатах
де:
r - відстань від точки на орбіті, де знаходиться планета до Сонця в а.о. ) AR ,
e - ексцентриситет орбіти ( геометрична властивість еліпса орбіти) Aeo ,
a - велика піввісь орбіти (середня відстань від планети до Сонця в а.о. ) Aao ,
v - кут справжньої аномалії ( кут у площині орбіти від перигелію до точки на
орбіті, де перебуває планета),
оскільки v = - Aap де:
- геліоцентрична довгота планети ( кут між точкою весняного рівнодення і точкою на орбіті де перебуває планета ) AG,
отже:
або ( 2 )
Це головна формула, яка визначає рух планети по еліптичній орбіті. Невідоми-
ми величинами тут є AG і AR: геліоцентрична довгота і радіус-вектор - основ-
ні ефемериди планети з яких в подальшому будуть визначатися інші.
Отже перед початком роботи програми нам відомі елементи орбіти, що є конс-
тантами, номер дати спостереження , початкові координати планети: геліоцентри-
чна довгота і радіус-вектор в початковий момент часу 9 січня 1990р. Використає-
мо 2 закон Кеплера для опису руху планети. Він говорить, що площа секторів
еліпса орбіти за одинаків проміжок часу однакова. Оскільки швидкість руху планети по орбіті незмінна, то дуги цих секторів будуть також однакові .
S1 = S2 ; R1 = R2
Знаючи елементи орбіти можемо визначити площу всього еліпса орбіти і поділивши на період обертання визначити площу еліпса за один день (n=1), або
за одну годину чи одну хвилину ( відповідно n=1/24, n=1/1440).
( в а.о.2 ) ( 3 )
Знаючи орбітальну швидкість (км/с) можемо визначити лінійну довжину дуги
еліпса орбіти за один день ( відповідно за 1 год., за 1 хв. )
R:= vорб * 86400 / AO ( * n ) ( в а.о. ) ( 4 )
де:
86400 - кількість секунд у дні ( 60*60*24 )
AO - астрономічна одиниця (середня відстань від Землі до Сонця)
Нам необхідно знайти - кут переміщення планети за n-днів.
( 5 )
( 6 )
Знайдемо довготу на 10 січня 1990р. : = поч + . За формулою ( 2 ) визначимо
точніше r2 радіус-вектор на 10 січня 1990р.
На початку циклу обчислень ми посуваємо початковий момент на 1 день ( або
n-днів). В кінці циклу ми прирівнюємо r1:=r2 і перевіряємо чи початковий мо-
мент часу став рівним моменту спостереження.
Другим кроком програми буде знаходження видимих екваторіальних координат планети: пряме піднесення і схилення . Пряме піднесення - вимірюється від точки весняного рівнодення вздовж небесного екватора назустріч видимому добовому обертанню небесної сфери до кола схилень світила і вимірюється в годинній мірі від 0 до 24h ( AA ). Схилення - вимірюється в градусах від небесного екватора вздовж кола схилень до світила (від-900 до+900 ) ( AB ). Здавалось пряме піднесення легко визначити розділивши довготу AG на 15 ( 150 = 1 год. ). Однак це було б правильно, якби Земля і планета рухалися на одній прямій від Сонця. Насправді нам необхідно розрахувати зміщення скорегувавши таким чином значення AG/15.
( 7 )
тоді AA:= + /15
Схилення планет однозначно визначити не можна . Оскільки площина орбіти
планети нахилена до площини екліптики під кутом і ( Aei ) , то знаючи піднесення
АА визначимо, яке б було схилення планети якби вона рухалася по екліптиці, а потім скорегуємо його відповідно до нахилу і на .
Схилення точки екліптики, знаючи його піднесення , можна визначити за формулою:
де - кут нахилу екліптики до небесного екватора ( 23,50 ).
Зміщення можна знайти розв'язавши задачу стереометрії. Виведення кінце-
вої формули досить велике, тому дамо остаточний результат:
( 8 )
де: = -
= -
= arcsin ( sin * sin )
тоді: AB= +
Знаючи Z і R з формули ( 8 ) можемо визначити лінійну відстань між Землею
і планетою
( 9 )
Знаючи AV і екваторіальний радіус планети можемо визначити видимий кутовий
діаметр планети.
( 10 )
Фазу планети визначають так:
Фаза планети - це її форма, що її бачить спостерігач із Землі. Вона зумовлена
змінами в умовах освітленості планети Сонцем під час руху навколо нього. В ас-
трономії фазу описують числом - це відношення найбільшої ширини освітленої
частини диска планети до його діаметра.
Важливими ефемеридами
Loading...

 
 

Цікаве