WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Тенденції розвитку сучасних технологій машинобудування - Реферат

Тенденції розвитку сучасних технологій машинобудування - Реферат


Реферат на тему:
Тенденції розвитку сучасних технологій машинобудування
План :
1. Застосування маловідходних технологій виготовлення заготовок деталей машин.
2. Використання верстатів з числовим програмним керуванням (ЧПК).
3. Створення гнучкого автоматизованого виробництва.
Технічний прогрес в машинобудуванні характеризується як покращенням конструкцій машин, так і неперервним удосконаленням технології їх виробництва. Від прийнятої технології залежить надійність роботи машин, а також економічність їх експлуатації.
Основні задачі:
- вдосконалення заготівельних процесів для максимального наближення форми заготовок до конфігурації готових деталей, підвищення точності заготовок та покращення якості їх поверхневого шару;
- підвищення точності обробки, якості поверхонь деталей машин;
- впровадження засобів автоматизації, верстатів з числовим програмним керуванням, багатоопераційних верстатів;
13.1. Застосування маловідходних технологій виготовлення заготовок деталей машин
Одним із головних напрямків розвитку виробництва є широке впровадження маловідходних і безвідходних технологій виготовлення заготовок деталей машин. Технологічна собівартість може бути суттєво знижена за рахунок впровадження точних заготовок. Такими заготовками є заготовки, що отримуються методами порошкової металургії та із композиційних матеріалів.
Можливості порошкової металургії для виготовлення деталей з різними властивостями практично необмежені. Цими методами можна створювати матеріали із композицій металів із різними неметалічними включеннями; отримувати матеріали заданої пористості; із заданими фізико-механічними властивостями. Виготовлені деталі можуть бути самими різними: антифрикційними, конструкційними, фільтруючими, електроконтактними, інструментальними, причому відходи при обробці є мінімальними.
Основними вихідними матеріалами деталей являються порошки металів (залізні, мідні, нікелеві, кобальтові, молібденові, вольфрамові, титанові), порошки-сплави та др. Фізико-механічні властивості порошків визначаються основним матеріалом, наявністю домішок, газів, формою і розмірами частинок, густиною і мікротвердістю.
Застосування високоенергетичних методів формоутворення деталей дозволяє досягати густини біля 100%, і, відповідно міцності, близької до міцності штамповок і виливок з того ж матеріалу.
Формування виробів в більшості випадків виконується холодним пресуванням у закритих прес-формах, після чого виріб запікається і отримує задані властивості. Після запікання можна проводити додаткову обробку: просочення мастильними матеріалами, термообробку, калібрування, обробку різанням.
До антифрикційних деталей відносяться підшипники ковзання, вкладиші, шайби, підп`ятники, які довгий час зберігають експлуатаційні властивості.
Високопористі матеріали застосовують в якості фільтруючих елементів для очищення газів і рідин. Так, пористі вироби із порошків бронзи, заліза, нікелю, титану застосовують в фільтрах для очистки повітря від пилу, водяного та мастильного туману, рідин, газів. Фільтри із титанової губки очищують агресивні водяні розчини кислот. Ці матеріали добре замінюють тканини, кераміку, скло, сітчасті фільтри.
Одним із найбільш перспективних напрямків створення матеріалів із високими експлуатаційними властивостями є формування композиційних матеріалів з вуглецевими волокнами, що мають різні фізико-механічні і фізико-хімічні властивості. Композиційні матеріали в порівнянні з металами і сплавами мають такі переваги: високі показники міцності, жорсткості і в`язкості; малу чутливість до зміни температури; теплових ударів, високу корозійну стійкість, малу чутливість до поверхневих дефектів, високі пластичні властивості, електро- і теплопровідність.
Композити дають можливість виготовляти деталі машин без заготівельних процесів шляхом безвідходної технології із значним зниженням маси за рахунок більш високої міцності і пружності матеріалів.
Зниження затрат на сировину і виробництво волокон, розробка раціональних технологічних процесів виготовлення деталей із композитів забезпечить їм широке використання в різних галузях промисловості.
13.2.Використання верстатів з числовим програмним керуванням (ЧПК)
Серійне виробництво, в якому випускається до 80% загальної продукції, характеризується великими затратами робочого часу на виконання допоміжних операцій. Основним напрямком скорочення цих затрат є автоматизація виробничих процесів за рахунок використання верстатів з числовим програмним керуванням (ЧПК). На цих верстатах досягається висока ступінь автоматизації обробки і можливість їх швидкого переналагоджування на обробку будь-якої деталі в межах технічних характеристик.
Ефективність застосування верстатів з ЧПК виражається в:
· підвищенні точності і однорідності розмірів і форми оброблюваних заготовок;
· підвищенні продуктивності обробки в кілька разів ;
· зниженні собівартості обробки;
· значному зниженні потреб у висококваліфікованих верстатниках.
Застосування верстатів з ЧПК розвивається у двох напрямках:
Перший напрямок - обробка дуже складних заготовок унікальних деталей, що мають складну конфігурацію і різні фасонні поверхні, виготовлення яких на традиційних верстатах є неможливим або вимагає великих затрат часу і праці, в тому числі висококваліфікованої або важкої фізичної праці.
Другий напрямок - обробка заготовок звичайних деталей з точністю ІТ16 - ІТ8 та шорсткістю Rz =(3…10) мкм. Економічна ефективність застосування верстатів з ЧПК проявляється уже при обробці відносно невеликих партій (20…30 шт.) заготовок.
Відбувається вдосконалення систем ЧПК та конструкцій верстатів, які сприяють підвищенню їх точності і продуктивності, розширенню технологічних можливостей по обробці з одного установа найбільшого числа поверхонь заготовки.
Вдосконалення систем ЧПК в першу чергу направляється на підвищення точності обробки заготовок і компенсацію виникаючих похибок. Системами забезпечується безступінчасте регулювання частоти обертання шпінделя із збереженням постійності швидкості різання при переході на обробку поверхонь другого діаметра; можливість кутового позиціонування шпинделя для орієнтованої установки в патрон несиметричної
Loading...

 
 

Цікаве