WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Проходження випадкового процесу через типовий радіотехнічний пристрій - Курсова робота

Проходження випадкового процесу через типовий радіотехнічний пристрій - Курсова робота

величини:
;
.
Нам потрібно визначити на виході системи такі параметри: математичне сподівання, кореляційну функцію процеса на виході, а також його дисперсію..
Згідно з визначенням математичного сподівання на виході обмежувача:
Останній інтеграл розбивається на три інтеграла:
1.
2.
3.
Тоді сумарне значення мат. сподівання на виході безінерційного симетричного обмежувача запишемо так:
Тепер знайдемо із вище приведеного загального виразу для математичного сподівання, аналітичний вираз. Так як ми маємо симетричний обмежувач, тобто коефіцієнти , тоді навіть не підставляючи у загальний вираз значення відношень та можна побачити, що математичне сподівання на виході нелінійної системи буде нульовим.
Тепер приступимо до розрахунку кореляційної функції на виході обмежувача. Для розрахунку кореляційноїфункції скористаємось такою формулою:
Після двократного диференціювання нелінійної характеристики обмежувача отримуємо:
Так як в нас використовується нормована кореляційна функція, знайдемо її значення заздалегідь:
Тепер безпосередньо почнемо шукати кореляційну функцію процесу на виході обмежувача:
З цієї формули ми зразу ж можемо знайти математичне сподівання на виході нелінійної системи (нехай S=0.5)
Тепер вибираємо значення коефіцієнтів а, обмежимося трьома значеннями цих коефіцієнтів (враховуємо те, що ми маємо симетричне обмеження):
Тоді запишемо математичний вигляд кореляційної функції на виході симетричного обмежувача:
Це ми розрахували параметри характеристик випадкового процесу на виході нелінійного безінерційного перетворювача. Тепер наша задача полягає у розрахунку лінійної системи, що є вихідною у нашому типовому радіотехнічному пристрої. Вихідні параметри нелінійної системи будуть вхідними параметрами для другої лінійної системи
3. Обчислення характеристик випадкового процесу на виході типового радіотехнічного пристрою.
Маємо такі вхідні параметри:
1.
2. ;
3.
4.
Нам потрібно знайти такі параметри системи:
1. математичне сподівання на виході пристрою -
2. кореляційну функцію
3. спектр сигналу на виході - ;
4. дисперсію -
Розрахуємо вихідне значення математичного сподівання. Математичне сподівання стаціонарного вихідного процесу обчислюємо за таким співвідношенням:
Знаходити інтеграл безпосередньо в даному випадку недоцільно, так як одним із співмножників є величина вхідного математичного сподівання. Ця величина вхідного математичного сподівання дорівнює нулеві, в зв'язку з чим добуток вхідного математичного сподівання на інтеграл буде теж дорівнювати нулеві. Тобто, математичне сподівання на виході типового радіотехнічного пристрою:
Тепер наше завдання полягає у знаходженні кореляційної функції на виході нашого пристрою. Кореляційну функцію процесу обчислюємо згідно із таким виразом:
Так як вище приведений інтеграл є доволі громіздким доцільно буде розбити його на декілька більш простих інтегралів, знайти ці інтеграли, а потім просумувати результати інтегрування.
1.
2.
Тепер будемо знаходити другий інтеграл. Його для більш простого і точного інтегрування доцільно буде теж розбити на декілька інтегралів (інтеграл суми дорівнює сумі інтегралів).:
1.
2.
Так як нам була поставлена умова, що , то зважаючи на цю умову знайдемо значення усіх коефіцієнтів:
Приймемо, що , тоді знайдемо параметри кола, у відповідності з припущенням:
Так як ми маємо умову , а також ми прийняли, що , то приймемо, що . Тепер розрахуємо ще деякі елементи кола:
Це ми визначилися із параметрами елементів другої лінійної системи. Тепер підставимо значення до знайденого загального виразу кореляційної функції на виході пристрою. Тоді отримаємо такі значення:
Тоді кореляційна функція набуде такого вигляду:
Тепер наша задача полягає у знаходженні дисперсії на виході системи.
Тепер знайдемо спектр вхідного сигналу. Відомо, що енергетичний спектр та кореляційна функція стаціонарного випадкового процесу зв'язані між собою формулами Хінчіна-Вінера. Використовуючи їх, а також використовуючи властивість парності кореляційної функції, можна записати:
Це ми знайшли енергетичний спектр сигналу на виході пристрою. Будуємо тепер графіки вихідних кореляційної функції (рис.3.1) та енергетичного спектру сигналу (рис.3.2).
Висновки
В даній курсовій роботі ми дослідили проходження випадкового процесу через типовий радіотехнічний пристрій, який складався з двох лінійних (вхід та вихід) і однієї нелінійної системи (безінерційний симетричний обмежувач). Як видно і розрахунків, а також із графічних побудов, то параметри сигналу після проходження усіх ланок змінюють свої параметри. Якщо проаналізувати два графіка - вхідний, та вихідний енергетичний спектр процесу - то можна побачити, що спектр на виході набагато менший спектра на вході. Це свідчить про те, що наш пристрій понизив енергію вхідного сигналу, тобто понизив енергію завади. Тим самим, якщо на вхід нашого пристрою діє як випадковий процес, так і якась корисна дія, то на виході ми отримаємо значно менший рівень завад, ніж на вході, тобто, відбувається елементарна фільтрація завад, про що свідчать графічні побудови.
Перелік використаної літератури:
1. Горяинов В.Т., Журавлев А.Г., Тихонов В.И. Статистическая радиотехника: Примеры и задачи. Учебное пособие для вузов/Под ред.В.И. Тихонова. - 2-е издание, переработанное и дополненное. М. Сов.радио, 1980.
2. Тихонов В. И.. Статистическая радиотехника. - Сов.радио, 1966.
3. Прохоров Ю. В., Розанов Ю. А. Теория вероятностей: основные понятия, предельные теоремы, случайные процессы. - 2-е издание, переработанное, - М. Наука, 1973
4. Тихонов В. И. Воздействие электрических флуктуаций на нелинейные радиотехнические устройства: Докт.дисц./ВВИА им. Н. Е. Жуковского. -М.-1956.
5. Гурский Е. И. Теория вероятностей с элементами математической статистики: Учебное пособие для вузов. - М.: Высшая школа, 1971.
рис.1.1
рис.1.2
рис.3.1
рис.3.2
Loading...

 
 

Цікаве