WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Загальна характеристика датчиків - Курсова робота

Загальна характеристика датчиків - Курсова робота

Рис.4. Фізичне трактування ефекту Хола

Якщо через пластину пропустити струм І та поперек цієї пластини пропустити магнітне поле з індукцією В, то на поперечних гранях пластини з'явиться напруга

Vн = RBIsinj/d,

де R – коефіцієнт Хола, який залежить від матеріалу пластини, В – магнітна індукція, І – струм, j - кут нахилу магнітної індукції до струму (він дорівнює 90°, якщо індукція поперечна до струму), d – товщина пластини.

Зараз знайдені матеріали, які мають досить великий коефіцієнт Хола. Датчик Хола можна також використати у ситуації рис.1 як пристрій для підрахування кількості обертів. Датчики Хола, що їх виготовляє компанія Honeywell поділяються на лінійні та цифрові. На рис.5 показана залежність вихідного сигналу від прикладеної до датчика напруги та магнітної індукції.

Рис.5. Залежність вихідного сигналу від прикладеної до датчика напруги та магнітної індукції.

Лінійні датчики можна використовувати для вимірювання відстані, параметрів магнітного поля, кутів обертання (наприклад, як електронний компас). Але дуже важливе його використання як датчика сили струму, товщини та інших величин. Цифрові датчики Хола видають на виході логічний „0" або логічну „1", якщо параметри магнітного поля перевищують задані. Причому поріг спрацювання може встановлюватись у мікросхемі датчика за допомогою програми. Ще один тип датчиків положення або близькості, що чутливі до магнітного поля – магніторезистивні датчики. У даний час вони виготовляються з пермалою, смуги якого чергуються зі смугами алюмінію (смуги Барбера). Електричний опір цих смуг залежить від прикладеного магнітного поля тому, що змінюється сумарний вектор намагнічування доменів магніторезистора (рис.6).

Рис.6. Дія доменів у магніторезисторі.

Для підвищення чутливості магніторезистори формуються у вигляді мостового включення чотирьох резисторів. Основні сфери використання магніторезистивних датчиків положення або близькості: контроль швидкості обертання; контроль положення; вимірювання струму; безконтактні перемикачі; компаси та гірокомпаси, визначення дефектів.

Ємнісні датчики використовують залежність ємності плоского конденсатора від відстані між пластинами конденсатора. Як відомо, ємність плоского конденсатора визначається формулою:

С = eS/d,

Де С – ємність, e - діелектрична постійна ізоляції між пластинами, S – площа поверхні пластин, d – відстань між пластинами. Розглянемо схему рис.7.

Рис.7,а. Ємнісний датчик, що реагує на відстань між пластинами

Рис.7,б. Ємнісний датчик, що реагує на зміщення пластин.

За допомогою імпульсу „Імп.1" відкриємо ключ і зарядимо конденсатор до напруги Uп (а це значить, що внесемо у конденсатор заряд q0 = CUп). Якщо ми будемо зміщувати вверх або вниз верхню пластину конденсатора (нижня залишається на місці), то при закритих ключах (незмінному заряді q0) напруга на конденсаторі Uвих = q0/C = dq0/eS і, таким чином лінійно зв'язана з відстанню d. Через деякий час за допомогою імпульсу „Імп.2" конденсатор розрядити. А потім знову зарядити, подавши імпульс"Імп.1", бо конденсатор має властивість саморозряджуватись, бо його діелектрик має не безкінечний опір. Це перший варіант датчика положення. У другому варіанті пластини конденсатора зміщуються по горизонталі так, що площа пластин, що перекриваються змінюється, а відстань між ними не змінюється. А оскільки ємність прямо пропорційна площі пластин, то переміщення пластини пропорційно змінює ємність.

В іншому варіанті, що зображений на рис.8 датчик ємності стає датчиком близькості.

Рис.8. Ємнісний датчик близькості

У даному випадку пластини конденсатора розведені. Якщо у електричному полі цих пластин з'являється річ, що має електричну провідність, то ємність конденсатора підвищується. Збільшення ємності можна відчути, коли ємність включена у генератор електричних коливань, частота коливань якого залежить від цієї ємності. По цій частоті можна не тільки виявити появу предмета, але і відстань до нього. На цьому принципі діють деякі прилади охоронної сигналізації.

Як вказано у табл..2, ємкісний датчик нестабільний, бо на величину ємності впливають параметри зовнішнього середовища, зокрема вологість та забруднення.

Ультразвукові та радіолокаційні датчики близькості працюють на принципі вимірювання відстані до предмету, що відбиває акустичні, або радіотехнічні сигнали. Передавач випромінює у простір (як правило, у деякому просторовому куті) потужний імпульс акустичної енергії або енергії радіохвиль. Цей імпульс відбивається від предмету, повертається у зворотному напрямку, приймається у приймачі, де вимірюється інтервал між часом посилки імпульсу та часом його прийому. Відстань, на якій працюють акустичні датчики близькості обмежена великим загасанням ультразвукового акустичного сигналу у повітрі, особливо в умовах великої вологості.

У радіолокаційних систем ця відстань може бути дуже високою. Наприклад, комплекс „Радіан-12", що використовується на полях аеродромів, може визначити появу людини на відстані до 1,2 км. Недолік радіотехнічних систем – висока вартість.

Фотоелектричні датчики близькості або положення працюють на подібному принципі. Світловипромінювач (це світлодіод або лазер) випромінює у простір світловий імпульс (як правило, в інфрачервоному діапазоні). На лінії розповсюдження цього імпульсу встановлений приймач світлової енергії. Якщо нема перешкод, то приймач одержує частину світлової енергії, якщо перешкода з'являється, то приймач її не одержує. Відстань дії цієї системи залежить від прозорості повітря, дощ, сніг або туман дуже скорочують цю відстань. Датчики положення на основі диференціальних трансформаторів у найпростішому варіанті складаються з циліндричної грати первинних та вторинних обмоток з окремою жилою, що проходить через центр. Жила має малий опір тертю та високу зносостійкість. При переміщенні вона змінє сигнал вторинної обмотки. Особливістю цього датчика є те, що ця жила не входить у електричний контакт з іншими електричними компонентами пристрою, тому датчик має високу надійність.

Оптоелектронні датчики положення

Такі датчики можуть визначати положення об'єкту на великій дистанції. Принцип роботи датчика показаний на рис.9.

Рис.9. Принцип роботи оптоелектронного датчика положення

Місцеположення об'єкту визначається джерелом світла, яке викликає розповсюдження світла в оптоволокні. При цьому світло затухає і на першому кінці (зліва по рисунку) інтенсивність S1 = k exp(-Ax), де х – відстань від джерела до першого кінця, А – показник затухання. На другому кінці (справа по рисунку) S2 = k exp[-A(L – x)]. Відношення цих величин: S2/S1 = exp(-AL)exp(2Ax), причому перший множник – константа, а другий залежить тільки від відстані х.

Датчики сили або тиску

Ємнісні датчики

Якщо звернутись до рис.7, то датчик сили можна побудувати, якщо між пластинами конденсатора встановити пружини, а на верхню пластину подати силове навантаження. Тоді, чим більше прикладена сила, тим більше будуть стиснуті пластини, тим менша буде відстань між ними, тим більша ємність. Але, оскільки такі датчики залежать від факторів зовнішнього середовища, то використання цього принципу потребує значних конструктивних зусиль.

А ось як безконтактні кнопки ємнісні датчики застосовуються часто. Використовується різка зміна ємності при натисненні пальцем кнопки. Конструкція датчика сили з кнопкою показана на рис.10.

Рис.10. Конструкція датчика сили

При натисненні на кнопку відстань між провідною силіконовою шайбою та електродами змінюється. Тому змінюється і ємність між обкладками електродів на друкованій платі. Мікросхема контролера перетворює ємність датчика у напругу, а потім у цифровий код. Такі датчики використовують у клавіатурах комп'ютерів, пультах мобільних телефонів, відеокамерах тощо.

Для вимірювання тиску використовується гнучка пластина конденсатора. Якщо на цю гнучку пластину поданий тиск, вона наближується до іншої постійної пластини конденсатора, тому ємність конденсатора змінюється в залежності від тиску. На рис.11 зображена така конструкція датчика тиску.

Рис.11. Конденсаторний датчик тиску

У конкретних конструкціях формуються складні форми діафрагм, що дозволяють одержати комбінації лінійності, чутливості та частотної характеристики.

П'єзоелектричні датчики

Дія цього датчика основана на використанні п'єзоелектричного ефекту, при якому при стисненні кристалу на його гранях з'являються електричні заряди. Такі датчики не потребуються зовнішнього збудження. Схема датчика показана на рис.1

Loading...

 
 

Цікаве