WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Конструювання обчислювальної техніки - Курсова робота

Конструювання обчислювальної техніки - Курсова робота

Рис.1.3. Циліндрична стінка

Хоча теплове коло, як і в попередньому випадку, складається з одного теплового елемента Rij, розрахункова формула буде іншою. В даному випадку площа поверхні, через яку проходить тепловий потік Ф, є функцією . Тому формула (1.6) набуває вигляду

.

Остаточно запишемо її так:

. (1.9)

Поперечна багатошарова стінка

На рис.1.4 зображена поперечна стінка, що складається з трьох шарів. Незмінний однорідний тепловий потік Ф послідовно проходить через кожний шар як через однорідну поперечну стінку площею А.

а) б)

Рис.1.4. Поперечна багатошарова стінка площею А (а) та її теплова модель (б)

Теплове коло є послідовним з'єднанням теплових опорів кожного шару. Тепловий опір всієї стінки визначається як сума теплових опорів елементів. У загальному випадку розрахункова формула набуває вигляду:

. (1.10)

Поздовжня багатошарова стінка

Всі шари стінки мають однакову товщину δ (рис.1.5).

а) б)

Рис.1.5. Поздовжня багатошарова стінка (а) та її теплова модель (б)

Тепловий потік Ф розподіляється між кожним шаром стінки площею Аk. Кожний шар має свою теплопровідність матеріалу λk. Через поверхню площею Аk проходить тепловий потік Фk, при цьому . Теплове коло є паралельним з'єднанням теплових опорів кожного шару. Тепловий опір всієї стінки знайдемо по аналогії з визначенням опору електричного кола. Одержимо розрахункову формулу

. (1.11)

1.4 Теплопровідність вздовж стінок та стержнів

Особливістю стержнів та пластин є одновимірний характер розповсюдження тепла. Тепловий потік у стержні рухається вздовж його осі, а в стінці – вздовж стінки. В поперечному напрямку температурний градієнт набагато менший, ніж уздовж стінки чи стержня. До стержнів можна віднести провідники, електроди термопар, тощо. До пластин можна віднести робочий елемент напівпровідникового випрямляча радіаторного типу, окреме ребро радіатора, шасі, на якому змонтовані деталі, тощо.

На рис.1.6 зображений стержень, вздовж якого рухається тепловий потік Ф

Рис.1.6. Тепловий потік стержня

Хоча тепловий потік рухається вздовж стержня, його інтенсивність падає, бо має місце віддача тепла з бокової поверхні стержня в оточуюче середовище. Тому, якщо на початку температура бокової поверхні стержня дорівнювала tm, то в кінці стержня вона падає до значення tk. Якщо L таке, що tk=tC (Фk=0), то для довільного перерізу з координатою х має місце формула:

, (1.12)

де А – площа поперечного перерізу;

U – периметр поперечного перерізу;

;

α - коефіцієнт тепловіддачі бокової поверхні стержня;

λ - теплопровідність матеріалу;

, .

1.5 Способи збільшення теплопровідності

Ефективна робота теплопроводів визначається не тільки їх геометрією, але й властивостями матеріалу. В першу чергу мова піде про теплопровідність λ, яка входить у всі наведені раніше розрахункові формули кондуктивної теплопередачі.

Матеріал зі значенням теплопровідності вважається теплопровідним. Тобто такі матеріали в загальному випадку здатні забезпечити відвід тепла від нагрітого елемента, запобігаючи його перегріву. Матеріали зі значенням теплопровідності вважаються теплоізоляційними. Розглянемо теплопровідності основних видів матеріалів більш детально.

Теплопровідність газів лежить у межах: (тільки у гелію і водню ці значення у п'ять разів більші). З ростом абсолютної температури Т їх теплопровідність зростає практично лінійно.

Теплопровідність рідин лежить в межах . Проте якщо в асоційованих рідинах (вода та ін.) з ростом Т значення λ зростають згідно параболічного закону, то у неасоційованих рідин (бензол та ін.) з ростом Т значення λ падають згідно параболічного закону.

Теплопровідність металів лежить в межах . У чистих металах при зростанні Т значення λ падає згідно параболічного закону, у сплавах – зростає лінійно.

Значення теплопровідності діелектриків лежить в межах . З ростом абсолютної температури Т значення λ зростає майже параболічно.

Особливе місце займають алмази (природні і штучні). Вони мають особливо високу теплопровідність . Це визначає їх широке застосування в електронній техніці (напівпровідникові прилади, інтегральні мікросхеми, тощо). Алмази дозволяють зменшити теплові опори між кристалами та корпусом.

Для зменшення теплового навантаження елементів електронних приладів потрібно:

  • використовувати матеріали з високим значенням λ;

  • збільшувати площу контакту елементів теплопроводів;

  • зменшувати шляхи теплопотоків.

Для цього потрібно знімати з контактів лаки, фарби, зменшувати шорсткість поверхонь і збільшувати тиск між ними, в якості прокладок використовувати пасти високої провідності, застосовувати шини між елементами і корпусом, замінювати гумові прокладки на свинцеві, застосовувати самонарізні гвинти.

В якості теплопровідних найбільше застосування знайшли такі матеріали:

  • мідь і алюміній для зниження контактного опору;

  • кадмій і олово для покриття елементів;

  • свинець, мідь, алюміній для виготовлення прокладок.

1.6 Передача теплової енергії конвекцією

1.6.1 Конвективна тепловіддача

Мова йде про передачу тепла з поверхні твердого тіла в газ або рідину, які переміщуються відносно поверхні. Цей процес суттєво залежить від стану нагрітого середовища. Конвекція завжди супроводжується теплопровідністю

,

де q- поверхнева густина теплового потоку;

- теплопровідна складова;

- конвективна складова.

Якщо швидкість переміщення V газу чи рідини відносно поверхні тіла падає до нуля, то . Якщо ж ця швидкість досягає високих значень, то . У більшості практичних задач .

Процес конвекції формально (математично) зводиться до процесу теплообміну (тіло - рідина). Цей процес називається конвективною тепловіддачею та виражається формулою Ньютона:

, (1.13)

де А - площа поверхні тепловіддачі;

- конвективна теплопровідність, ;

- коефіцієнт конвективної тепловіддачі, .

Формула Ньютона виглядає як лінійна функція, але справа в тому, що коефіцієнт конвективної тепловіддачі складним чином суттєво залежить від багатьох теплофізичних та гідродинамічних факторів. Коефіцієнт конвективної тепловіддачі розглянемо як функцію

, (1.14)

де - температура тіла;

- температура середовища;

- коефіцієнт термічного розширення середовища;

- теплопровідність середовища;

- теплоємність середовища;

- коефіцієнт динамічної в'язкості середовища;

- густина середовища;

- визначальний розмір тіла;

- прискорення земного тяжіння.

В залежності від конкретних умов (1.14) може набути досить простого вигляду. Теорія подібності дає ряд критеріїв, які дозволяють класифікувати задачу визначення αK по значеннях цих критеріїв. Формула (1.14) в залежності від конкретних умов набуває декількох характерних форм, кожна з яких значно простіша базової формули.

1.6.2 Вільна конвекція в необмеженому просторі

Значення αK в першу чергу залежить від стану граничного шару рідини. Для тіл з одним визначальним розміром L (вертикальні плити, стінки, довгі провідники) широкого застосування набула емпірична формула:

,

деPr- число Прантля, , ;

Gr- число Грасгофа, ;

Nu- число Нуссельта, ;

c, n – емпіричні коефіцієнти;

m – індекс, який означає, що фізичні параметри рідини беруться для середньої температури

. (1.15)

В залежності від значення комплексного критерію розрізняють чотири типових ситуації, які характеризуються певним режимом руху рідини та значеннями С і n (таблиця 1.1).

Таблиця. 1.1.

Режими руху рідини

Значення

c

n

Режим руху рідини

1

0,5

0

Плівковий

2

1,18

1/8

Перехідний до ламінарного

3

0,54

1/4

Ламінарний

4

0,135

1/3

Турбулентний

Формула (1.15) універсальна в тому розумінні, що стосується різних середовищ (повітря, водень, вуглекислий газ, мастила тощо). Нас ця формула цікавить з точки зору застосування до електронних схем, тобто коли середовищем є повітря.

Форма поверхонь тіл зводиться до трьох базових поверхонь: площина, сфера, циліндр.

Ці поверхні характеризуються одним визначальним розміром L та орієнтацією поверхні в середовищі (повітрі). Орієнтація характеризується значенням параметра N. Основні випадки орієнтації поверхні наведемо у вигляді таблиці 1.2.

Чотири характерні режими конвективної тепловіддачі пов'язують зі значенням емпіричного індексу n і називають законом ступеня n. Розглянемо кожний з чотирьох законів та дамо відповідні формули визначення конвективної тепловіддачі.

Loading...

 
 

Цікаве