WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Розробка інформаційно-вимірювальної системи для перевірки гідромоторів - Курсова робота

Розробка інформаційно-вимірювальної системи для перевірки гідромоторів - Курсова робота

Мікроконтролер (МК) має вбудований аналого-цифровий перетворювач на 8 каналів. Для вибору каналу використовується, аналоговий мультиплексор. Тобто номер каналу задається програмно, при цьому відповідний канал аналоговим мультиплексором комутується з входом аналого-цифрового перетворювача, який виконує перетворення вхідного аналогового сигналу у цифровий код. Отримане двійкове слово передається в лінію зв'язку вбудованим універсальним асинхронним приймачем-передавачем. Вихідний сигнал МК узгоджується з інтерфейсом RS-232 схемою узгодження рівнів. Отриманий сигнал через СОМ порт передається до ЕОМ.

4. Розробка інформаційно-вимірюваної системи для повірки параметрів гідромоторів

4.1 Вибір мікроконтролера

Для реалізації задач бакалаврської роботи використовується 8-розрядний мікроконтролер фірми Atmel серії AT90S8515.

КМОН мікроконтролери AT90S8515 реалізовані по AVR RISC архітектурі (Гарвардська архітектура з роздільною пам'яттю і роздільними шинами для пам'яті програм і даних). Виконуючи команди за один тактовий цикл, прилади забезпечують продуктивність, що наближається до 1 MIPS/МГЦ. AVR ядро об'єднує потужну систему команд з 32 8-розрядними регістрами загального призначення і конвеєрне звернення до пам'яті програм. Шість з 32 регістрів можуть використовуватися як три 16-розрядних регістра-покажчика при побічній адресації простору пам'яті. Виконання відносних переходів і команд виклика реалізується з прямою адресацією всього обсягу (4К) адресного простору. Адреси периферійних функцій містяться в просторі пам'яті вводу/виводу. Архітектура ефективно підтримує як мови високого рівня, так і програми на мовах асемблера.

Мікроконтролери містять: 4 Кбайт програмованого Flash, 128 байт СОЗП і 256 байт програмованого ЕСППЗП, 20 ліній вводу/виводу загального призначення, 32 регістри загального призначення, два таймера/лічильника з режимом захоплення і порівняння, 6-канальний 10-розрядний аналого-цифровий перетворювач, систему внутрішніх і зовнішніх переривань, програмований послідовний UART, програмований сторожовий таймер з внутрішнім генератором, послідовний порт з інтерфейсом SPI. Програмно управляються два режими енергозбереження. В пасивному режимі (idle) ЦПУ зупиняється, але СОЗУ, таймери/лічильники, порт SPI, сторожовий таймер і система переривань залишаються активними. В стоповому режимі (power down) зупиняється тактовий генератор і, отже зупиняються всі функції, доки не надійде сигнал зовнішнього переривання або апаратного скидання, але зберігається вміст регістрів.

Вбудована Flash пам'ять програм може перепрограмовуватися безпосередньо в системі шляхом інтерфейсу SPI (в послідовному низьковольтному режимі) або програмуватися стандартними програматорами енергонезалежної пам'яті (в 12-вольтовому паралельному режимі).

Максимальне споживання приладів в активному режимі складає 3.0 мА і в пасивному режимі 1.2 мА (при VCC =3 В і f = 4 МГЦ). В стоповому режимі, при працюючому сторожовому таймері, мікроконтролер споживає 15 мкА.

Об'єднання на одному кристалі вдосконаленого 8-розрядного RISC ЦПУ з Flash ПЗУ, яка завантажується дозволило фірмі створити потужний мікроконтролер, що забезпечує високу гнучкість і економічність в використанні приладу в якості вбудованого контролера.

Port B (PB5... PB0) 6-розрядний двонаправлений порт I/O із вбудованими навантажувальними резисторами. Вихідні буфери забезпечують втікаючий струм 20 мА. При використанні виводів порта в якості входів і установці зовнішнім сигналом в низький стан, струм буде витікати тільки при підключених вбудованих навантажувальних резисторах. Порт B використовується також при реалізації різноманітних спеціальних функцій.

Port C (PC5... PC0) 6-розрядний двунаправлений порт I/O із вбудованими навантажувальними резисторами. Вихідні буфери забезпечують втікаючий струм 20 мА. При використанні виводів порта в якості входів і установці зовнішнім сигналом в низький стан, струм буде витікати тільки при підключених вбудованих навантажувальних резисторах. Входи порта використовуються також як аналогові входи аналого-цифрового перетворювача.

Port D (PD7.. PD0) 8-розрядний двунаправлений порт I/O із вбудованими навантажувальними резисторами. Вихідні буфери забезпечують втікаючий струм 20 мА. При використанні виводів порта в якості входів і установці зовнішнім сигналом в низький стан, струм буде витікати тільки при підключених вбудованих навантажувальних резисторах. Порт D використовується також при реалізації різноманітних спеціальних функцій.

RESET Вхід скидання. Для виконання скидання необхідно утримувати низький рівень на вході протягом двох машинних циклів.

XTAL1 Вхід інвертуючого підсилювача генератора і вхід схеми вбудованого генератора тактової частоти.

XTAL2 Вихід інвертуючого підсилювача генератора.

AVCC Напруга живлення аналого-цифрового перетворювача. Вивод під'єднується до зовнішнього VCC через низькочастотний фільтр.

AREF Вхід аналогової напруги порівняння для аналого-цифрового перетворювача. На цей вивод, для забезпечення роботи аналого-цифрового перетворювача, подається напруга в діапазоні між AGND і AVCC.

AGND Цей вивод повинен бути під'єднаний до окремої аналогової землі, якщо плата оснащена нею. В іншому випадку вивод під'єднується до загальної землі.

Для живлення ADC використовуються два окремих входи: AVсс і AGND. Вхід AGND повинен бути приєднаний до GND в якомусь одному місці, а напруга AVсс не повинна відрізнятися від напруги Vсс більш ніж на 0,4 В. Зовнішня напруга порівняння подається на вхід AREF і повинна бути в діапазоні від 2,7 В до AVсс.

Схема включення мікроконтролера АТ90S8515 показана на рисунку 4.1.

Рисунок 4.1 – Схема включення мікроконтролера

Мікроконтролер АТ90S8515 має такі технічні характеристики:

  • діапазон напруги живлення: від 2,7 до 6,0 В;

  • діапазон тактової частоти: від 0 до 4 МГц;

  • діапазон роботи АЦП: від 0 до 6 В;

  • час перетворення АЦП: 70...280 мс;

  • клас точності 0,05 [5]

4.2 Вбудований аналого-цифровий перетворювач

Мікроконтролери AT90S8515 оснащені 10-розрядним ADC послідовного наближення. ADC під'єднано до 6-розрядного аналогового мультиплексора, що дозволяє використати будь-який вивод порта С в якості входу ADC. ADC містить підсилювач вибірки/зберігання, що утримує напругу входу ADC під час перетворення на незмінному рівні. Блок-схема ADC представлена на рисунку 4.2. Для живлення ADC використовуються два окремих виводи: AVCC і AGND. Вивод AGND повинен бути під'єднаний до GND а напруга AVCC не повинна відрізнятися від напруги VCC більш ніж на 0.4 В.

Зовнішня напруга порівняння подається на вивод AREF і повинна бути в діапазоні від 2.7 В до AVCC.

Робота аналого-цифрового перетворювача

Аналого-цифровий перетворювач може працювати в двох режимах: режимі однократного перетворення і режимі циклічного перетворення. В режимі однократного перетворення кожне перетворення ініціюється користувачем. В режимі циклічного перетворення ADC здійснює вибірку і оновлення вмісту регістру даних ADC безупинно. Вибір режиму виробляється бітом ADFR регістру ADCSR.

Робота ADC дозволяється установкою в стан 1 біту ADEN в регістрі ADCSR. Першому перетворенню, що починається після дозволу ADC, передує порожнє ініціалізуюче перетворення. На користувачі це відбивається лише тим, що перше перетворення буде займати 27 тактових циклів, замість звичайних 14.

Перетворення починається з установки в стан 1 біта початку перетворення ADSC. Цей біт знаходиться в стані 1 протягом всього циклу перетворення і скидається, по завершенні перетворення, апаратно. Якщо в процесі виконання перетворення виконується зміна каналу даних, те ADC спочатку закінчить поточне перетворення і лише потім виконає перехід до іншого каналу.

Оскільки ADC формує 10-розрядний результат, то по завершенні перетворення результуючі дані розміщуються в двох регістрах даних ADCH і ADCL. Для забезпечення відповідності результуючих даних рівню, що зчитується використовується спеціальна логіка захисту.

Рисунок 4.2 – Блок-схема аналого-цифрового перетворювача

Цей механізм працює слідуючим чином: при зчитуванні даних першим повинен бути зчитаний регістр ADCL. Як тільки ADCL зчитаний звернення ADC до регістрів даних блокується. Таким Чином, якщо після зчитування стану ADCL, але до зчитування ADCH, буде завершене наступне перетворення, жоден з регістрів не буде оновлений і записаний раніше результат не буде викривлений. Звернення ADC до регістрів ADCH і ADCL дозволяється по завершенні зчитування вмісту регістру ADCH.

ADC має своє власне переривання, що може бути активоване по завершенню перетворення. Коли звернення ADC до регістрів заборонено, в процесі зчитування регістрів ADCL і ADCH, переривання буде активуватися, навіть якщо результат буде втрачений.

Loading...

 
 

Цікаве