WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Розробка методики розрахунку осердя з прямокутною петлею гістерезису при імпульсному діянні - Курсова робота

Розробка методики розрахунку осердя з прямокутною петлею гістерезису при імпульсному діянні - Курсова робота

4. ПРОГРАМА РОЗРАХУНКУ

4.1 Вхідні дані

На основі наведених даних в Таблица 0.1 вхідні дані для розрахунку представлені на Малюнок 5.6.

Малюнок 5.6 – Вхідні дані

4.2 Розрахунок

У відповідності до методики і наведеного прикладу розрахунку проведено розрахунок геометричної форми осердя, використовуючи математичний пакет MathCAD 2001 Professional.

На основі наведеної програми на Малюнок 5.6 знайдено ряд значень величини повного імпульсу діючого поля.

Малюнок 5.6 – Програма розрахунку імпульсу діючого поля

Значення величин повного імпульсу представлені в табличному виді на Малюнок 5.6.

Малюнок 5.6. Значення величини повного імпульсу діючого поля

Графік залежності Q(t) наведений на рисунку 3.4.

Визначення радіусу окружності осердя ρ, на якому напруженість досягла коерцитивної сили, досягається за рахунок усереднення значень величині повного імпульсу і обрахунку радіусу осердя. Обрахунок радіусу осердя при Нс показано на Малюнок 5.4.

Малюнок 5.4 – Обрахунок радіусу осердя при Нс

На основі проведено обрахунку визначено середню величину повного імпульсу діючого поля – Q=5,72 А/см, а також радіус осердя при значені коерцитивної сили – ρ=7,59 мм.

Для визначення геометричних співвідношень осердя – внутрішнього і зовнішнього радіусів осердя, проводиться розв'язання системи рівнянь середнього по перерізу значення вектора магнітної індукції і напруженості вздовж середньої лінії осердя:

Розв'язання нелінійної системи рівнянь проводиться стандартними засобами MathCAD, розрахунок даної системи рівнянь наведений на Ошибка: источник перекрестной ссылки не найден5.5.

Малюнок 5.5 – Розв'язання нелінійної системи рівнянь

Отже, значення внутрішнього і зовнішнього радіусів кільцевої форми осердя відповідно дорівнюють r1=6,29 мм, r2=7,72 мм.

Для впевненості того, що осердя із вказаними параметрами геометричної форми приймає характеристику прямокутної петлі гістерезису, на основі середніх по перерізу осердя значень вектора магнітної індукції і значень напруженості вздовж середньої лінії осердя побудовано графік петлі гістерезису. Вхідні дані для побудови графіка петлі гістерезису представлено на Малюнок 5.6.

Малюнок 5.6 – Значення вектора магнітної індукції і напруженості

Графічна залежність вектора магнітної індукції від напруженості в загальному вигляді відповідає виду прямокутної петлі гістерезису. За допомогою січних визначено значення напруженості Н1 і Н2, при яких значення магнітної індукції відповідно дорівнюють -0,22 Тл, і +0,22 Тл.

Значення напруженості Н1 відповідає 0,133 А/см, а Н2 – 0,21 А/см.

Напруженості Н1, Н2 і геометричні співвідношення осердя підлягають виконанню умові залежностей із певною похибкою.

Однак, виконання умови відношення радіусів окружності осердя приблизно дорівнюють 1, що обумовлює наявності форми петлі гістерезиса матеріалу осердя.

Малюнок 5.7 – Графічна залежність В=f(H)

Обрахунок товщини матеріалу осердя при вказаних параметрах магній-марганцевого матеріалу із довідника представлений на мал.5.8.

Малюнок 5.8 – Товщина матеріалу

Отже, на основі проведених розрахунків визначено параметри геометричної форми кільцевого осердя, котрі відповідають значенням 6,29х7,72х1,33.

4.3 Вихідні дані

На основі проведеного розрахунку геометричної форми осердя із прямокутною петлею гістерезису при імпульсному діянні в математичному пакеті MathCAD, вихідними даними являються:

  • значення вектора магнітної індукції – B;

  • значення напруженості – H;

  • внутрішній радіус осердя – r1;

  • зовнішній радіус осердя – r2;

  • товщина матеріалу – d.

По вихідним даним значень вектора магнітної індукції і напруженості побудовано графік прямокутної петлі гістерезису, котрий задовольняє початковим умовам вхідних даних.

ВИСНОВОК

В даній курсовій роботі проведено розрахунок кільцевої форми осердя з прямокутною петлею гістерезису при імпульсному діянні. У відповідності підготовленого теоретичного матеріалу та описаної методики розрахунку виконано приклад розрахунку посилаючись на математичну модель.

На основі наведеної математичної моделі розрахунку кільцевої форми осердя запрограмована за допомогою математичного пакету MathCad програму визначення геометричної форми кільцевого осердя – зовнішнього, внутрішнього радіусів та товщини матеріалу осердя. Програма розрахунку вміщає в собі графічну модель залежності індукції від напруженості магнітного поля, описуючи прямокутну петлю гістерезису.

Аналіз проведених розрахунків дозволяє зробити висновок:

  • вид петлі гістерезису залежить не тільки від типу матеріалу, але й від геометричної форми осердя;

  • для забезпечення прямокутної петлі гістерезису співвідношення внутрішнього та зовнішнього радіусів осердя повинно по можливості бути рівним одиниці;

залежність петлі гістерезису від геометричної форми осердя визначається співвідношенням напруженості із геометричними співвідношеннями осердя.

ПЕРЕЛІК ПОСИЛАНЬ

  1. www.ru.wikipedia.org/wiki/Гистерезис

  2. www.pereplet.ru/obrazovanie/stsoros/248.html

  3. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

  4. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

  5. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с.

  6. Вонсовский С.В. Магнетизм. М.: Наука, 1984. (Проблемы науки и технического прогресса).

  7. Каганов М.И., Цукерник В.М. Природа магнетизма. М.: Наука, 1982. (Б-чка "Квант").

  8. Мишин Д.Д. Магнитные материалы. М.: Высш. шк., 1991.

  9. Кандаурова Г.С., Оноприенко Л.Г. Доменная структура магнетиков. Основные вопросы микромагнетики. Свердловск: УрГУ, 1986.

10. Милозоров В.П. Электромагнитные устройства автоматики: Высш. школа, 1983. – 408

ДОДАТОК А

Схема програми

0100090000031602000002009601000000009601000026060f002203574d46430100000000000100b2050000000001000000000300000000000000030000010000006c000000000000000000000008000000100000000000000000000000c92b0000e53d000020454d4600000100000300001000000002000000000000000000000000000000900600001a040000b801000013010000000000000000000000000000c0b6060038320400160000000c000000180000000a0000001000000000000000000000000900000010000000ac0100005d020000520000007001000001000000f1ffffff00000000000000000000000090010000000000cc04400022430061006c006900620072006900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100dc5f11001000000040631100c060110052516032406311003860110010000000a8611100246311002451603240631100386011002000000049642f31386011004063110020000000ffffffff9c2fe600d0642f31ffffffffffff0180ffff0180efff0180ffffffff0000000000080000000800004300000001000000000000006000000025000000372e9001cc00020f0502020204030204ef0200a07b20004000000000000000009f00000000000000430061006c00690062007200000000000000000000611100dee32e31e88d0832606411006c6011009c3827310800000001000000a8601100a8601100e878253108000000d06011009c2fe6006476000800000000250000000c00000001000000250000000c00000001000000250000000c00000001000000120000000c00000001000000180000000c00000000000002540000005400000000000000000000000800000010000000010000001886d1411886d141000000000d000000010000004c000000040000000000000000000000ac0100005d020000500000002000d6ff0900000046000000280000001c0000004744494302000000ffffffffffffffffad0100005e020000000000004600000014000000080000004744494303000000250000000c0000000e000080250000000c0000000e0000800e000000140000000000000010000000140000000400000003010800050000000b0200000000050000000c025d02ac01040000002e0118001c000000fb02f1ff0000000000009001000000cc0440002243616c6962726900000000000000000000000000000000000000000000000000040000002d010000040000002d010000040000002d0100000400000002010100050000000902000000020d000000320a0d0000000100040000000000ac015d02203f09001c000000fb021000070000000000bc02000000cc0102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010100040000002d010100030000000000

Loading...

 
 

Цікаве