WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Розробка методики розрахунку осердя з прямокутною петлею гістерезису при імпульсному діянні - Курсова робота

Розробка методики розрахунку осердя з прямокутною петлею гістерезису при імпульсному діянні - Курсова робота

Однією із зазначених величин є усереднені значення напруженості Н0, названою пороговою напруженістю (полем старту).

Для розрахунків необхідна величина повного імпульсного поля, яку можна визначити із формули (8.14)

(1.14)

. (1.15)

В ряді випадків треба знати зв'язок між середнім і максимальним значенням вихідної напруги. Її можна оцінити по коефіцієнту форми

(1.16)

Маючи характеристику 1/=f(Hm), легко визначити, наприклад, амплітуду напруженості, яка спостерігається в обмотці із числом витків w, що намотані на сердечнику перетині s із остаточною індукцією Вr при деякому значенні прямокутного імпульсу напруженості в перемагніченій обмотці.

2. МЕТОДИКА РОЗРАХУНКУ

Основа методики розрахунку геометричної форми осердя із прямокутною петлею гістерезису при імпульсному діянні полягає у визначенні параметрів геометричних співвідношень кільцевого осердя:

  • внутрішнього радіусу осердя;

  • зовнішнього радіусу осердя;

  • товщини матеріалу.

Дія на магнітний елемент осердя спричинена імпульсом діючого поля, котрий проходить по провіднику крізь осердя. Це поле являється зовнішнім по відношенню до магнітного осердя.

Величина повного імпульсу поля визначається по формулі:

, (2.1)

де, Sw – постійна перемагнічування, котра представляє собою мінімальний імпульс діючого поля необхідного для перемагнічування осердя від -Br до + Br:

(2.2)

Нср – умовна напруженість вздовж середньої лінії осердя, А/см;

Н0 – порогове значення напруженості, А/см;

- час повного перемагнічування осердя від -Br до + Br, мкс;

Імпульсна характеристика , показаної на Малюнок 2.6.

Малюнок 2.6 – Імпульсна характеристика феритів

Вид петлі гістерезису залежить не тільки від типу матеріалу, але і від геометричної форми осердя, крім цього може бути різним у різноманітних зразках у силі технологічних відхилень, наявність домішок і так далі. Зазвичай в довідниках надають характеристики матеріалів. Розглянемо вплив форми кільцевого осердя на петлю гістерезису допускаючи, що матеріал осердя володіє ідеальною петлею гістерезису. Допустимо, що весь матеріал осердя в початковому стані має індукцію – Вr, і перемагнічується при подачі прямокутних імпульсів, створюючи діюче магнітне поле обумовлене величиною повного імпульсу, яку можна визначити за формулою 2.1. Доки імпульс діючого поля менший від певного значення повного імпульсу, при якому напруженість досягає значення коерцитивної сили – Нс, на внутрішньому радіусі r1, осердя не перемагнічується. При більшому значені імпульсу діючого поля – матеріал осердя розпочинає перемагнічуватись

Нехай при деякому значені імпульсу діючого поля радіус, на якому напруженість досягла коерцитивної сили визначається за формулою:

(2.3)

Толі шари осердя, котрі лежать у внутрішній окрузі радіусом ρ, будуть володіти напруженістю більшою за Нс і перемагнічуватись в стані +Br, а шари, котрі лежать зовні, ще зберігатимуть індукцію -Br, так як напруженість цих шарів менша за Нс (Малюнок 2.6).

Малюнок 2.6 – Геометрична форма осердя

Із збільшенням імпульсів діючого поля до значення повного імпульсу, при яких значення коерцитивної сили досягає зовнішній шар осердя, весь об'єм матеріалу переходить в стан +B і перемагнічування завершується.

Для ряду значень повного імпульсу діючого поля на основі обрахованого значення радіусу ρ, визначається середнє по перерізу значення магнітної індукції за формулою:

(2.4)

Для тих же значень повного імпульсу діючого поля визначається умовна напруженість вздовж середньої лінії осердя:

(2.5)

Якщо по даних отриманих із формул (2.4), (2.5), побудувати петлю гістерезису сердечника, то вона прийме вигляд показаний на рисунку (2.3), де напруженість Н1 і Н2 зв'язані з геометричним відношенням сердечника залежністю показаній у формулі (2.6).

,(2.6)

Щоб петля гістерезису була схожою по формі до петлі гістерезису матеріалу, відношення r1/r2 має приблизно дорівнювати одиниці.

Малюнок 2.3 – Залежність петлі гістерезису від геометричної форми сердечника

Чим вища частота перемагнічування сердечника, тим тонший вибирають матеріал. Рекомендується, щоб товщина матеріалу відповідала умові показаній у формулі (2.7)

(2.7)

де - питомий опір матеріалу, ; - максимальна абсолютна магнітна проникливість матеріалу, Гн/м; - частота перемагнічування, Гц.

3. ПРИКЛАД РОЗРАХУНКУ

На основі наведеного методу розрахунку осердя із прямокутною петлею гістерезиса при імпульсному діянні проведемо розрахунок геометричної форми кільцевого осердя, припускаючи що матеріал осердя володіє ідеальною петлею гістерезису. Так як, прямокутну петлю гістерезису мають магній-марганцеві ферити, котрі отримали переважаюче розповсюдження в пристроях дискретної дії, тому даний матеріал використаємо для подальшого розрахунку геометричної форми осердя.

В Таблица 0.1 наведені характеристики магній-марганцевого матеріалу, який покладений в основу розрахунку осердя.

Таблица 0.1 – Імпульсні характеристики магній-марганцевого матеріалу із прямокутною петлею гістерезису

Марка фериту

Нс, А/см

Br, Тл

Н0, А/см

Sw, Кл/см

0,16 ВТ

0,12

0,22

0,72

0,32

Для розрахунку приймаються наступні величини:

Нс – коерцитивна сила напруженості, А/см;

Br – магнітна індукція при якій досягається намагніченість матеріалу, Тл;

H0 – порогова напруженість, А/см;

Sw – постійна перемагнічування, Кл/см.

Враховуючи, що матеріал осердя володіє ідеальною петлею гістерезису, тому в початковому стані осердя приймає значення магнітної індукції – 0,22 Тл. Перемагнічування осердя досягається при імпульсному діянні генератора прямокутних імпульсів, створюючи діюче поле, яке обумовлене зміною магнітної індукції.

Для подальшого розрахунку необхідно розрахувати величину повного імпульсу діючого поля за формулою :

де, t – час імпульсу діючого поля, мкс.

На Малюнок 3.6 представлена графічна залежність Q=f(t). Значення імпульсу діючого поля при якому t=0 відповідає значенню постійної перемагнічування Sw.

Малюнок 3.6 – Графічне представлення залежності Q(t)

Розрахуємо радіус осердя, на якому напруженість діючого поля досягла коерцитивної сили Нс=0,12 А/см за формулою :

Шари осердя, котрі лежать у внутрішній окрузі радіусом ρ, будуть володіти напруженістю більшою за 0,12 А/см і перемагнічуватись в стані +0,22 Тл, а шари, котрі лежать зовні, ще зберігатимуть індукцію -0,22 Тл, так як напруженість цих шарів менша 0,12 А/см (Малюнок 3.2).

Малюнок 3.6 – Геометрична форма осердя

Із збільшенням імпульсів діючого поля, при яких значення коерцитивної сили досягає зовнішній шар осердя, весь об'єм матеріалу переходить в стан +0,22 Тл і перемагнічування завершується.

Для ряду значень повного імпульсу діючого поля на основі обрахованого значення радіусу ρ, визначимо середнє по перерізу значення магнітної індукції за формулою:

де,

r1 – радіус внутрішньої окружності осердя, мм;

r2 – радіус зовнішньої окружності осердя, мм.

Для даних значень повного імпульсу діючого поля визначимо обумовлену напруженість здовж середньої лінії осердя за формулою:

По даним залежностей Вср і Нср побудована петля гістерезису осердя прийме вид прямокутної петлі, котра показана на (Малюнок 3.6).

Малюнок 3.6. Ідеальна петля гістерезису

Напруженості Н1 і Н2 зв'язані із геометричними співвідношеннями осердя залежністю, яка рівна 1 і що характеризує прямокутну петлю гістерезису:

На основі розв'язку системи рівнянь залежностей Вср і Нср визначаються геометричні співвідношення осердя – радіуси внутрішньої (r1) і зовнішньої окружності (r2) осердя:

Товщину пластини матеріалу осердя визначимо за формулою:

Отже, на основі проведених розрахунків знайдено геометричні співвідношення осердя:

  • r1 – радіус внутрішньої окружності осердя;

  • r2 – радіус зовнішньої окружності осердя;

  • d – товщина матеріалу осердя.

Вибір мови програмування

Реалізуємо виконання розрахунку геометричної форми осердя із прямокутною петлею гістерезису при імпульсному діянні на ЕОМ. Для цього використаємо математичний пакет MathCAD 2001 Professional. Даний пакет є досить розповсюдженим, доступним і не потребує значних вимог від системного забезпечення. Для функціонування програми необхідно встановити математичний пакет MathCAD 2001 Professional на комп'ютер, який вимагає наступного системного забезпечення:

  • процесор Pentium ІІ 456 MHz і вище,

  • 256 MB оперативної пам'яті і більше;

  • операційну систему Windows 95 і вище.

Loading...

 
 

Цікаве