WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Перетворювач напруга-тривалість імпульсу - Курсова робота

Перетворювач напруга-тривалість імпульсу - Курсова робота

Розрахуємо потужність на виході даного каскаду.

Початкові дані:

10 В, Rн = 5 Ом,

Іmax =, (2.12)

Іmax = .

Розрахуємо максимальну вихідну потужність:

Рmax=Umax Imax;, (2.13)

Рmax =10*2=20 (Вт).

Визначимо напругу живлення підсилювача потужності:

Ек=1,2 Umax, (2.14)

Ек= 12 (В).

Визначаємо потужність транзисторів:

Рн =1,1, (2.15)

Рн =11 (Вт).

Така потужність відповідає гармонічному сигналу і тому при розрахунках має бути скорегована для конкретного типу сигналів.

Так як ми використовуємо двотактний каскад, то визначаємо потужність одного транзистора

Рк=, (2.16)

Рк =5,5.

Визначаємо верхню робочу частоту.

Використовуємо наближену формулу

, (2.17)

МГц.

За даними параметрами з довідника оберемо транзистори КТ850В типу NPN та КТ851В типу PNP (таблиця 2.1).

Таблиця 2.1 – Основні параметри транзистора

Ікmax, A

Uкеmax, B

h21e

min/max

fгр, МГц

Uекн, В

2

150

20

20

1

2.7 Попередній розрахунок проміжного каскаду

Так як кінцевий каскад виконаний по схемі зі спільним колектором, то . Як правило напруга на виході модулятора близька до напруги живлення , тому може бути, що коефіцієнт передачі по напрузі проміжних каскадів приблизно дорівнює одиниці – .

Визначаємо коефіцієнт підсилення по струму проміжного каскаду:

, (2.18)

, (2.19)

=0,05 (А).

=5,

де - струм колектора кінцевого каскаду;

– коефіцієнт передачі вибраного резистора;

– вихідний струм проміжного каскаду.

По значенням вихідного струму проміжного каскаду і іншим параметрам можна вибрати транзистор попереднього каскаду.

>2Ek проміжного каскаду.

обирається з запасом, так як колекторний струм транзистора проміжного каскаду має забезпечити струм сигналу і струм базового падіння, і має дорівнювати 4.

Ркдоп = (1,2...1,5) Рвхкк, (2.20)

де Рвхкк=,

.

Вибираємо транзистор типу КТ604АМ NPN і його основні параметри (таблиця 2.2)

Таблиця 2.2 – Параметри транзистора КТ604АМ

Pкmax,

Вт

Ікmax,

А

Uкеmax,

В

h21e

min/max

fгр,

МГц

Uекн,

В

3

0.2

250

30

40

8

2.8 Розробка детальної структури схеми

Детальна структурна схема наведена на рисунку 2.2

Рисунок 2.2 – Детальна структурна схема

АМВ – автоколивальний мультивібратор, використовується для того, щоб сформувати імпульси з напругою 10 В та частотою 15 МГц. Оснований на К544УД2А;

ПП – первинний перетворювач, призначений для перетворення струму в напругу. Схема основана на ОП К544УД2А. Межі вихідної напруги 10В;

К – компаратор, оснований на СА1;

ПК – проміжний каскад, оснований на КТ604АМ;

ПП – підсилювач потужності, використовується для забезпечення потужності на навантаженні. Оснований на КТ850В, КТ851В

Закінчивши попередню розробку структурної схеми, маємо схему, розбиту на декілька каскадів, внаслідок чого, для кожного з каскадів зроблений попередній розрахунок. Тобто визначені динамічні діапазони, коефіцієнти підсилення, максимальні значення струмів, напруг, потужностей, вибрані згідно розрахункам операційні підсилювачі, транзистори.

3. Електричні розрахунки

3.1 Електричний розрахунок підсилювача потужності

Електричний розрахунок виконуємо за допомогою електричної принципової схеми, яка зображена на рисунку 3.1.

Рисунок 3.1 – Схема ПП електрична принципова

Вхідні дані:

= 10 В,

= 10 мВ.

Задаємось Кu = 10,

Кu = (1 + R4 / R5), (3.1)

R5 = 22,2 кОм.

3.2 Електричний розрахунок первинного перетворювача

Проведемо розрахунок первинного перетворювача за допомогою схеми електричної принципової первинного перетворювача (рисунок 3.2).

Рисунок 3.2 – Схема первинного перетворювача електрична принципова

Вхідні дані:

= 10 В,

= 10 мВ,

, (3.2)

Задаємось =100.

(3.3)

= 99, = 99 Ом.

3.3 Електричний розрахунок АМВ

На рисунку 3.3 зображена схема АМВ електрична принципова.

Рисунок 3.3 – Схема АМВ електрична принципова

Розрахуємо опір.

Вхідні данні:

Частота модуляції fmax= 50 кГц,

Umax= 10 В.

Визначимо напругу живлення за заданою амплітудою вихідних імпульсів:

=(1,2...1,4)= 10...12 В. (3.4)

Оберемо = 12 В.

Оскільки частота f = 50 кГц, задавшись ємністю конденсатора С1=1000 пФ розрахуємо значення резистора R1:

(3.5)

R1 С2–23–15 кОм, Р=0,125Вт,.

А також конденсатор:

С1 КМ6М47–100пФ,5%.

4. Моделювання одного з вузлів

Проведемо моделювання одного з вузлів перетворювача з метою впевнитись у його працездатності. Проведемо моделювання автоколивального мультивібратора (рисунок 4.1). Підставимо всі обрані вище номінали. На вхід підсилювача подаємо імпульси прямокутної форми (рисунок 4.2).

Рисунок 4.1 – Автоколивальний мультивібратор

Рисунок 4.2 – Амплітуда вихідної напруги

Висновки

У даному курсовому проекті розроблений імпульсний перетворювач струм – тривалість імпульсу з використанням транзисторів КТ850В та КТ851В, має наступні технічні характеристики: частота модуляції 50кГц; діапазон напруги 10 мВ – 10В; опір навантаження 5 Ом; Схема підсилювача представлена на рисунку 8.

Перетворювач напруга – тривалість імпульсу вимірює напругу при заданій тривалості імпульсу.

Представлені результати розробки, виконаного на основі операційного підсилювача (ОП) та джерела струму. Перетворювач напруга – тривалість імпульсу забезпечує можливість вимірювання напруги, а також тривалості імпульсів і періоду проходження імпульсів. Описаний принцип роботи приладу і окремих його вузлів. Приводяться обґрунтування вибору основних структурних рішень основних вузлів.

В процесі роботи проводився розрахунок параметрів підсилювача, аналіз різних схем, були розраховані еквівалентні моделі транзистора. В результаті роботи одержали принципову готову схему перетворювача напруга – тривалість імпульсу з відомою топологією і відомими номіналами елементів.

Література

1. Харовіц П.Н. Мистецтво схемотехніки. т. 2. – М: "Мир" 1986. – 55 с.

2. Гурин Е.И. Ноніусний вимірник тимчасових інтервалів з обчислюваним коефіцієнтом інтерполяції. – Прилади і техніка експерименту, 1998. – 215 с.

3. Мерзляков С.И., Стрекаловский О.В., Цурин И.П. 4-канальний субнаносекундний перетворювач час-код НО 251М. – Прилади і техніка експерименту, 1995. – 106 с.

4. Глушковский М.Е. Швидкодійні амплітудні аналізатори в сучасній ядерній фізиці і техніці. – М: Енергоатоміздат, 1986. – 253 с.

5. Міністерство електронної промисловості СРСР "Напівпровідникові прилади". Довідник, том 13. Транзистори. Видання друге. Науково-дослідний інститут, 1988. – 224 с.

6. Пасинків В.В., Чиркин Л.К. Напівпровідникові прилади. – М: Вища школа, 1987. – 432 с.

7. Довідник. "Вживання інтегральних мікросхем в електронній обчислювальній техніці". – М: "Радіо і зв'язок". 1987. – 400 с.

8. Наумов Ю.Е. Інтегральні схеми. М. Сов. радио, 1970. – 112 с.

9. Аналогові і цифрові інтегральні схеми / Під редакцією С.В. Якубовського. – М. Сов. радио, 1979. – 479 с.

10. Мікросхеми і їх вживання / В.А. Батушев, В.Г Вениаминов, В.Г. Ковалев. М.: Енергія, 1978. – 416 с.

Loading...

 
 

Цікаве