WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Перетворювач напруга-тривалість імпульсу - Курсова робота

Перетворювач напруга-тривалість імпульсу - Курсова робота

Та частина приладу, у якій первинний сигнал перетвориться, наприклад, в електричний, називається первинним перетворювачем. Часто цей перетворювач сполучається з чуттєвим елементом. Сигнали з виходу первинного перетворювача надходять на наступні перетворювачі вимірювального приладу.

У схемах з датчиками, включеними в системи, що стежать, з датчика знімається лише сигнал неузгодженості, що стає рівним нулю в сталому стані системи, що стежить.

Основним недоліком цих схем є залежність значення вихідної величини від параметрів джерела живлення датчика, підсилювача й інших елементів схеми, а також від зовнішніх умов. Справді, варто змінитися напрузі чи частоті генератора, що живить датчик, як напруга, частота і фаза, що є вихідними величинами і, що знімаються з опору R, також зміняться.

Згідно ДСТУ 2681–94 "Метрологія. Терміни та визначення" та ДСТУ 2682-94 "Метрологія. Метрологічне забезпечення" даний розроблений перетворювач струм – тривалість імпульсу відноситься до первинних вимірювальних перетворювачів

2. Розробка структурної схеми

2.1 Аналіз існуючи методів вимірювання напруги

Напруга – напругою U12 на ділянці 1–2 називається фізична величина, що визначається роботою, що виконується сумарним полем електростатичних і сторонніх сил при переміщенні одиничного позитивного заряду на даній ділянці кола. Поняття напруги є узагальненим поняттям різниці потенціалів: напруга на кінцях ділянки кола дорівнює різниці потенціалів в тому випадку, якщо на цій ділянці не прикладена електрорушійна сила.

Напруга (різниця потенціалів) – робота, яка затрачається на переміщення одиничного заряду з однієї точки в іншу.

Напруга вимірюється у вольтах.

Для вимірювання напруги використовуються прилади, які називаються вольтметрами, мілівольтметрами тощо.

Закон Ома для ділянки електричного ланцюга має вигляд:

U = RI, (2.1)

де U – напруга чи різниця потенціалів;

I – сила струму;

R – опір.

Закон Ома також застосовується і до всього ланцюга, але в дещо в зміненій формі:

, (2.2)

де – ЕРС ланцюга;

I – сила струму в ланцюзі;

R – опір всіх елементів ланцюга;

r – внутрішній опір джерела живлення.

Якщо ланцюг містить не лише активні, але і реактивні компоненти (ємності, індуктивності), а струм являється синусоїдальним з циклічною частотою ω, то закон узагальнюється: величини, що входять в нього стають комплексними

(2.3)

де U = U0eiωt – напруга чи різниця потенціалів;

I – сила струму;

Z = Reiδ – комплексний опір;

R = (Ra2+Rr2)1/2 – повний опір;

Rr = ωL – 1/ωC – реактивний опір (різниця індуктивного і ємнісного);

Rа – активний опір, що не залежить від частоти;

Δ = arctg Rr/Ra – зсув фаз між напругою і силою струму.

Імпульсні генератори – призначені для одержання сигналів, форма яких суттєво відрізняється від синусоїдальної. Такі сигнали характеризуються наявністю ділянок з відносно повільною зміною амплітуди і її стрибковою зміною. Імпульсні генератори мають внутрішній або зовнішній позитивний зворотній зв'язок.

Особливість роботи активних елементів: вони періодично, дуже швидко змінюють свій стан з одного крайнього положення в інше.

Основні режими імпульсних генераторів:

– автоколивальний – після збудження генерується послідовність імпульсів, характеристики яких визначаються лише параметрами елементів схеми;

– очікування – генератори імпульсів відбуваються лише за наявності зовнішнього сигналу запуску;

– синхронізації – частота вихідних імпульсів рівна чи кратна частоті зовнішнього синхронізуючого сигналу.

Формувачі імпульсів – пристрої, які виробляють імпульси необхідної тривалості з інших імпульсів чи з перепаду напруг (фронту).

Формувачі імпульсів бувають:

– на логічних елементах;

– з інтегруючим ланцюгом;

– з емітерним повторювачем;

– на мікросхемах.

2.2 Розробка структурної схеми перетворювача

На рисунку 2.1 наведена спрощена структурної схеми перетворювача.

Рисунок 2.1 – Спрощена структурна схема перетворювача

АМВ – автоколивальний мультивібратор, використовується для того, щоб сформувати імпульси вхідного сигналу з певною частотою. Межі частоти зазначені в умові f = 15 кГц;

ПП – первинний перетворювач на основі ОП, призначений для перетворення струму у напругу;

К – компаратор, що формує вихідні сигнали;

ПК – проміжний каскад;

ПП – підсилювач потужності, використовується для забезпечення потужності на навантаженні

2.3 Попередній розрахунок АМВ

Даний каскад використовується для генерування імпульсів зі сталою напругою і частотою. Особливих вимог до даного генератора не висувається.

Задана частота перетворення 15 кГц та напругу на виході 15 В.

Напруга на виході генератора не повинна бути висока для зменшення похибки. Нехай Uвих= 15 В, тоді =(1,2...1,4) Uвих = (7–9) В.

Задамося =В.

Гранична частота на виході ОП має бути досить висока.

Визначимо напругу живлення за заданою амплітудою вихідних імпульсів:

, (2.4)

,

, (2.5)

Виберемо ОП К554УД2А.

Основні параметри:

В вхідна напруга;

В максимальна вихідна напруга;

Ом вихідний опір;

МГц гранична частота.

2.4 Попередній розрахунок первинного перетворювача

Для первинного перетворювача обираємо той же операційний підсилювач, так як напруга живлення в нас не змінюється: =В.

Задамося R5 = R6 =1кОм.

Напруга на виході перетворювача розраховується наступним чином:

10мВ...1В,

100мВ....10В.

Перший діапазон:

Uвх max = 1 В,

Uвих max = 10 В,

Кu = Uвих max/ Uвих max = 10, (2.6)

Кu = (1 + R4 / R3), (2.7)

Задамося R4 > 200 кОм,

R3 = 22,2 кОм.

Другий діапазон:

Кu = 10,

Кu = (1 + R4 / R5), (2.8)

R5 = 22,2 кОм.

2.5 Попередній розрахунок компаратора

Перетворення напруги Ux, що прямо пропорційна струму Іx, здійснюється за допомогою порівнювального пристрою – компаратора напруги. На один вхід компаратора поступає перетворювана напруга Ux, а на другий – пиловидна напруга. В момент збігу миттєвого значення пиловидної напруги з величиною напруги Ux, змінюється вихідний стан компаратора, який зберігається до закінчення пиловидної напруги. З цього слідує, що на виході компаратора формується імпульс, що пропорційний напрузі Ux, і, відповідно, значенню струму Іx. Мінімальна тривалість імпульсу на виході компаратора для чіткої її фіксації має бути не менше 1 мкс.

Напруга Ux, що пропорційна Іx, змінюється від 10 мВ до 10 В, тоді амплітуда пиловидної напруги теж має змінюватись від 10 мВ до 10 В. Період повторення складає Т = 100 мкс, тобто швидкість наростання вихідного сигналу складе 0,1 В/мкс. Формування пиловидної напруги здійсним за допомогою генератора на основі очікуваного мультивібратора з періодичним шунтуванням ключових елементів час заданого кола. Амплітуда вихідного імпульсу має бути не менше 15 В на опорі навантаження 5 Ом. Оберемо компаратор СА1. Основними параметрами компаратора є швидкість зростання напруги ρ, і максимальний час фронту tф.

Розрахуємо граничну частоту:

, (2.9)

=1 мкс,

, (2.10)

=1/100 мкс

(2.11)

2.6 Попередній розрахунок підсилювача потужності

В якості підсилювача потужності використаємо підсилювальний каскад, побудований за схемою спільний колектор. Так як за рахунок від'ємного зворотного зв'язку він має малий вихідний опір та мале спотворення.

Loading...

 
 

Цікаве