WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Монтаж пристроїв та систем автоматизації - Курсова робота

Монтаж пристроїв та систем автоматизації - Курсова робота

Наявність в схемі крана-перемикача істотно полегшує пуск і наладку системи каскадно-зв'язаного регулювання. З його допомогою допоміжний регулятор може включатися спочатку по одноконтурній схемі (на роботу від ручного задатчика), а потім — на роботу по схемі КСР.

Вказані схеми управління процесом спалювання палива передбачають стабілізацію лише окремих параметрів роботи печей. Створені пізніше системи автоматичного регулювання (САР) є багатозв'язковими системами, які дозволяють регулювати весь комплекс параметрів теплового режиму печей, діючих на рідкому паливі. Схема на Рис.3.4,а складається з вузлів каскадного регулювання температури сировини на виході з печі (позиції 6 і 7), регулювання витрати водяної пари в певному співвідношенні з витратою мазуту (1 і 4), регулюваннярізниці тиску мазуту і пари з корекцією по в'язкості мазуту (2, 3 і 5).

Одночасно з каскадною САР температури сировини на виході з печі діє система регулювання витрати пари, що подається до пальників для розпиленості рідкого палива. Витрата пари регулюється стежачою системою, яка, "простежуючи" зміну витрати мазуту, змінює витрату пари так, щоб строго зберігалося задане співвідношення між витратами мазуту і пари. Автоматично регулюється і підтримується різниця тиску пари і мазуту, що необхідне для нормальної розпиленості палива. Для запобігання засмічення пальників при збільшенні в'язкості мазуту передбачена корекція по в'язкості. Зважаючи на складність вимірювання в'язкості мазуту, в системі вимірюється його температура, від якої залежить в'язкість. Коефіцієнт корекції фіксується на блоці співвідношення. Тиск в паропроводі по суті "подслежує" зміна тиску мазуту, який, у свою чергу, змінюється при коливанні його температури. Постійна величина, визначальна різниця між тиском мазуту і пари, встановлюється на блоці, що підсумовує. Відхилення від заданого значення температури сировини на виході з печі дорівнювало 2,5 °С, що значно нижче за того, що допускається за технологічним регламентом. При цьому усереднена добова економія палива склала 15 т, економія пари 7,5 т.

На Рис.3.3, б показана схема САР процесу горіння в трубчастій печі, відмінна тим, що тут співвідношення між витратами рідкого палива і пари змінюється автоматично залежно від вмісту кисню в топочних газах, що йдуть (позиція 8). По конструктивних міркуваннях крапка для аналізу газів вибрана в свині печі. В двох її крапках (поблизу пальників і в свині) перевіряється розрядка (позиції 9 і 10), щоб контролювати витрату первинного повітря на горіння. Аналіз газів на зміст кисню проводиться газоаналізатором МН-5106. Для введення в САР сигналу від газоаналізатора його вторинний прилад забезпечений пневмоприставкой.

На Рис.3.4 показана схема САР кількості рідкого палива при його постійній витраті. Тут завдання регулятору витрати палива коректується регулятором температури. Ця система забезпечує більш якісне в порівнянні з розглянутими САР управління температурним режимом печі у разі застосування пальників, що часто засмічуються. Працездатність даної САР підтверджена промисловими випробуваннями.

Управління тепловим режимом печі за рахунок зміни подачі мазуту до пальників вимагає його підігріву і підтримки на певному рівні температури, щоб в'язкість палива була постійною. Для цього паливна циркуляційна система має великий об'єм (звичайно рівний трех- і чотирикратній кількості палива від кількості його, спалюваного в пальниках в течію години), а всі трубопроводи і розподільний колектор забезпечуються системою обігріву і тепловою ізоляцією.

Вимірювання витрати палива. Вимірювання витрати мазуту, як і інших в'язких рідких палив, за допомогою діафрагм утруднено зважаючи на порівняно малі витрати і низькі значення числа Рейнольдса, якими характеризується рух палива по трубопроводах. При малих значеннях Re (порядка 200—500) постійність коефіцієнтів витрати зберігається лише при використовуванні звужуючих пристроїв нестандартної форми: діафрагм здвоєних і з подвійним скосом, сопів комбінованих і з профілем "четверть круга" або "півкола" і ін.

Рис.3.4. Схема системи автоматичного регулювання процесу горіння в трубчастої печі (кількість рідкого палива регулюється при постійній витраті): 1,2 — термопари; 3, 4 — діафрагми; 5, 6 — датчики тиску; 7 — датчики газоаналізатора; решта позначень та ж, що на Рис.3.1 і Рис.3.3.

Рис.3.5. Конструктивні розміри діафрагми з подвійним скосом для вимірювання витрати мазуту.

Для вимірювання витрати мазуту G може бути успішно застосована діафрагма з подвійним скосом (Рис.3.5), для якої модуль звужуючого пристрою m=0,12, а внутрішній діаметр трубопроводу dвн розраховується по формулі

Re= (3.1)

де Gmax, р і v — відповідно максимальна витрата, густина і кінематична в'язкість мазуту.

Підставляючи у формулу (3.1) різні значення dвн, знаходять число Re при максимальній витраті мазуту Gmax і його мінімальну витрату Gmіn при Re=60. Для вибраного dвн число Re (при Gmіn воно рівне 20—25% Gmax) повинне бути не менше 60 (при m=0,12). Відповідно до dвн розточують діаметр діафрагми, визначаючи його із залежності

dд = dвн (3.2)

причому dд -— діаметр розточування діафрагми.

Діафрагми з подвійним скосом вимагають ретельного виготовлення і індивідуального градуювання, оскільки вплив їх геометричних розмірів і чистоти обробки поверхні на точність вимірювання витрати палива вивчений ще недостатньо. Конструктивні розміри діафрагм з подвійним скосом для вимірювання витрати мазуту при Re=60—1000 показані на Рис.3.5.

Для расходоміра мазуту можуть застосовуватися прилади пневматичної системи СТАР: датчик — диференціальний манометр ДМ-ПЗ, вторинні прилади — ПВ4-23 (при контролі) і ПВ10.1Э (при автоматичному управлінні). При постійній температурі мазуту погрішність расходоміра не перевищує 2—3%.

4. Опис роботи контурів

По числу контурів проходження сигналів автоматичної системи регулювання (АСР) ділять на одноконтурні і багатоконтурні.

Одноконтурними називаються системи, що містять один замкнутий контур, та багатоконтурними – маючих декількох замкнутих контурів. Багатоконтурні АСР можуть застосовуватися і для регулювання однієї величини з метою підвищення якості перехідного процесу.

В нашому прикладі розглядається багатоконтурна АСР, оскільки у нас:

перший контур – замкнутий контур виміру витрати палива;

другий контур – вимірювання температури продукту при виході з трубчастої печі;

третій контур – свідчення тиску топочных газів;

четвертий контур – регулювання подачі палива, по початкових результатах попередніх контурів ( див. ФСА).

5. Перелік засобів автоматизації

№ п/п

Найменування засобу

Тип

Кількість

1

Термопари

ТХК-089

2

2

Преобразовувач

ЭПП-63

2

3

Вторинний показуючий пристрій

ЗРЛ-29В

2

4

Регулюючий блок

4РБ-32А

3

5

Датчик тиску

МГП-270

1

6

Вторинний пристрій

ОЧ-МС-610

1

7

Газоаналізувач

МН-5106

1

8

Пневмоклапан

ПЭКДД

2

9

Сигналізатор рівня

МЭСУ

1

6. Монтаж відбірних пристроїв та первинних перетворювачів

Первинні перетворювачі вмонтовують з складальних одиниць і деталей, виготовлених і випробуваних на заводах по виробництву монтажних виробів. Для установки ряду первинних перетворювачів (наприклад, манометрів, дифманометрів) розроблені типові настановні конструкції (ТК і ТМ). Місця установки первинних перетворювачів вказані в робочих кресленнях проекту. Розмітку місць установки і вирізку отворів для кріплення первинних перетворювачів виконує організація, що вмонтовує технологічне устаткування та трубопроводи.

Незалежно від виконавців всі роботи по розмітці, вирізці і пристрою отворів для первинних перетворювачів здійснюються під спостереженням відповідального представника організації, що вмонтовує прилади і засоби автоматизації.

6.1 Монтаж діафрагми

Loading...

 
 

Цікаве