WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Метод вейвлет-перетворення - Курсова робота

Метод вейвлет-перетворення - Курсова робота

Рисунок 1.2 - Оптичні властивості лазерного променя на шкірі

В залежності від довжини хвилі випромінювання, що падає, відбивається до 60% випромінювання. Розсіювання залежить від негомогенних структур тканини і визначається різними показниками заломлення в різних шарах і різницею між шарами і їх навколишнім середовищем. Хвилі з довжиною набагато більшою, ніж діаметр шару ( 10 мкм), розсіюються клітинними структурами лише в незначній мірі. Але тому, що електромагнітний спектр широко використовуваних лазерів простягається від ІЧ (1 мм-0,78 мкм) до УФ (0,38-0,10 мкм) діапазону довжин хвиль, ми практично завжди маємо справу з розсіюванням. Глибину проникнення для довжини хвиль більше 1,0 мкм можна розрахувати на основі закону Ламберта-Бера в першому наближенні [7].

Інтенсивність I випромінювання, що пройшло через прошарок товщиною d визначається співвідношенням:

I=I0e-d, (1.1)

де I0 - інтенсивність при вході в речовину і  - коефіцієнт поглинання.

При застосуванні монохроматичного випромінювання довжиною хвилі  для коефіцієнта поглинання дійсне таке співвідношення:

= 4nk/, (1.2)

причому показники переломлення n і поглинання k є константами для даного середовища. Співвідношення Ламберта-Бера справедливе в тому випадку, коли поглинання набагато перевищує розсіювання [8].

Частіше всього пропонується рішення опису взаємодії лазерного випрмінювання з біотканинами з позицій теорії радіаційного переносу [9], при цьому бiотканина аналізується як випадково-неоднорідне середовище, яке розсіює та поглинає, а випромінювання, що розповсюджується в ній, – як потік енергії, тобто всі ефекти, зв'язані з хвильовою природою світла (дифракція, iнтерференція, поляризація ), не приймаються до уваги.

Основне рівняння теорії радіаційного переносу може бути записане в вигляді

, (1.3)

де I (z, ) – потужність випромінювання, що розповсюджується на глибині z через одиничний майданчик і в одиничному тілесному куті в напрямку, який складає з нормаллю до цього майданчика кут, конус якого рівний , Втм-2стер-1; а тa s – коефіцієнти поглинання і розсіювання, м-1; Р ((', ) – фазова функція розсіювання, що описує вірогідність того, що світло розповсюджується в напрямку .

Найкращим чином співвідношення поглинання і розсіювання описане в теорії Кубелки-Мунка [8,9]. Рівняння, що описує поширення випромінювання в середовищах з врахуванням поглинання і розсіювання має вигляд:

dLc(r,z)/dz = -Lc(r,z), (1.4)

де Lc(r,z) - щільність потужності випромінювання [Вт/м2] колімованого променя в місці р (вектор місця) у напрямку z,  - коефіцієнт ослаблення (сума коефіцієнтів розсіювання [м-1] і поглинання [м-1]).

Розсіювання в біологічній тканині залежить від довжини хвилі лазерного променя. Випромінювання ексимерного лазера УФ діапазону (193, 248, 308 і 351 мкм), а також ІЧ-випромінювання 2,9 мкм ErYAG-лазера і 10,6 мкм СО2-лазеру мають глибину проникнення від 1 до 20 мкм [10,11]. Тут розсіювання грає другорядну роль. Для світла з довжиною хвилі 450-590 нм, що відповідає лініям аргону, глибина проникнення складає в середньому 0,5-2,5мм. Як поглинання так і розсіювання грають тут значну роль. Лазерний промінь цієї довжини хвилі хоча і залишається в тканині колімованим у центрі, але він оточений зоною з високим розсіюванням. Від 15% до 40% енергії падаючого пучка світла розсіюється. У області спектра між 590 і 1500 нм, у яку входять лінії Nd:YAG лазера 1,06 і 1,32 мкм, домінує розсіювання. Глибина проникнення складає від 2,0 до 8,0 мм.

1.2 Аналіз оптико-електронних ІІС для аналізу гемодинамічних показників

Реанімаційно-хірургічні монітори ЮМ-300 мають вбудовану систему автоматизованого кардіо- і реоаналізу. В основу аналізу покладений метод математичної обробки плетизмограми і кардіоінтервалів, зареєстрованих протягом визначеного часу.

У результаті аналізу ритму серця будуються такі графіки:

  • РИТМОГРАМА - це послідовність вертикальних ліній, висота яких відповідає тривалості відповідного RR-інтервалу (в секундах). На осі абсцис відкладаються порядкові номери RR-інтервалів;

  • ГІСТОГРАМА (варіаційна пульсометрія) - східчаста функція розподілуRR-інтервалів у досліджуваному ряді їхніх значень;

  • СКАТТЕРГРАМА - послідовне нанесення на графік у прямокутній системі координат двох сусідніх RR-інтервалів. Скаттерграма особливо ефективна, при діагностиці аритмії.

  • Крім того, проводиться спектральний аналіз ритму серця, будується відповідний графік (спектр ритму) і визначаються частотні складові спектра.

Система кардіоаналізу дозволяє визначати наступні параметри:

ДХ =RRmax - RRmin - варіаційний розмах; Мо - мода (значення RR-інтервалу, що найчастіше зустрічається); АМо - амплітуда моди (число реалізації (у відсотках) даної моди стосовно загального числа аналізованих кардіоінтервалів); RR - середня тривалість (мс) синусових RR-інтервалів за 5 хв: SDNN - середньоквадратичне відхилення від середньої тривалості всіх синусових RR-інтервалів (за 5 хв.); Cv - коефіцієнт варіації (%) - відношення SDNN до RR; SDANN - середньоквадратичне відхилення від середніх тривалостей синусових інтервалів, розрахованих на всіх 5-хвилинних інтервалах запису; PNN50 - частка сусідніх синусових інтервалів, що розрізняються більш ніж на 50 мс; RMSSD - середньоквадратичне відхилення між тривалістю сусідніх синусових інтервалів; ULF - потужність (енергія) складової спектра ультранизької частоти (0-0,04 Гц); LF - потужність низькочастотної складової спектра (0,04-0,15 Гц); HF - потужність високочастотної складової спектра (0,15-0,4 Гц); LF/HF - відношення потужностей низькочастотної і високочастотної складових спектра.

З аналізу плетизмографічних даних визначаються наступні параметри: t1 - тривалість RR-інтервалу; t2 - анакротична фаза; t3 - катакротична фаза; t4 - період швидкого кровонаповнення; t5 - період повільного кровонаповнення; t6 - період венозного відтоку; Vsf - сфігмографічна швидкість; 11 - дикротичний індекс; 12 - діастолічний індекс; 13 - індекс периферійного опору; 14 - інтегральний гідравлічний індекс; 15 - інтегральний артеріальний індекс; 16 - інтегральний венозний індекс;

Всі накопичені дані можна передати в комп'ютер і роздрукувати за допомогою спеціального програмного забезпечення [10].

2. ВИКОРИСТАННЯ ПЕРЕТВОРЕННЯ ФУР'Є ДЛЯ АНАЛІЗУ ПУЛЬСОВОЇ ХВИЛІ

Програма обчислення миттєвого значення частоти ударів пульсу входить у склад спеціалізованого програмного забезпечення (СПЗ) та проводить обробку аналогових сигналів, що надходять з датчиків пульсової хвилі різного типу (оптоелектронних, ємнісних, тензометричних і т.д.), з метою обчислення періоду пульсової хвилі та перерахунка миттєвого значення частоти ударів пульсу за хвилину. Задача ускладнюється тим, що пульсовій хвилі, як і іншим біомедичним сигналам, що повторюються, притаманний квазіперіодичний характер [5]. Це означає, що кожний наступний період сигналу лише приблизно відповідає попередньому, особливо за амплітудою відповідних ділянок (наприклад, екстремальних значень). Крім того, форма сигналу може різко змінюватись від періоду до періоду у зв'язку із загальним хвилюванням дослідженого хворого, що був поміщений у незвичну для нього обстановку. Тому неможливо використовувати прості методи обчислення періоду сигналу, що полягають у пошуку екстремальних точок з однаковою амплітудою. Хороші результати отримують при використанні перетворення Фур'є та аналізі періоду першої гармоніки розкладеної у спектр сигналу, однак дані методи потребують значних обчислювальних витрат за часом та об'ємом оперативної пам'яті.

В результаті моделювання запропонований достатньо простий швидкодіючий засіб обчислення миттєвого значення частоти пульсу, що використовує прості операції складання, віднімання та порівняння.Алгоритм обчислення миттєвого значення частоти ударів пульсу

Запропонований алгоритм обчислення миттєвого значення частоти ударів пульсу складається з таких етапів:

- виконується настройка таймера ТО ОМЕВМ на заданий дискрет часу t у нс роботи АЦП;

- виконується установка коефіцієнта перерахунка лічильника для коректування правильної роботи системних годинників;

- виконується установка максимального розміру місця у ОЗП, що відводиться під буфер відліків з АЦП N буфера;

- виконується установка програмного флага роботи АЦП, тобто дозволяється робота АЦП, що виконується програмою обробки переривання від таймера;

- відбувається циклічний аналіз стану програмного флага переповнення таймера ТО. Якщо підпрограма обробки переривання від таймера, то ще не заповнений весь буфер відліків у ОЗП, програмний флаг роботи зберігає одиничне значення. Таким чином, відбувається зупинка роботи основної програми до повного заповнення буферів відліку, коли підпрограма обробки переривання спрацьовує програмний флаг роботи та зупиняє запис відліків у буфер;

Loading...

 
 

Цікаве