WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → " Зменшення ""Блочного ефекту"" при передачі зображення" - Курсова робота

" Зменшення ""Блочного ефекту"" при передачі зображення" - Курсова робота

Останнім часом теорія вейвлет-перетворення переживає просто революційний ріст. З'явилися й розвиваються такі напрямки, як біортогональні вейвлети, мультівейвлети, вейвлет-пакети, ліфтинг і т.д.

Градієнтський метод

У літературі існує кілька підходів до аналізу многомасштабної інформації, тобто, до побудови картини контурів об'єктів на основі градієнтних зображень різних масштабів[5]. Існують підходи, у яких аналіз градієнтних зображень проводиться від грубих масштабів до точних, також існують підходи де аналіз виконується, навпаки, від до точних масштабів до грубих і підходи, у яких аналіз не залежить від послідовності розглядання зображень. Дані підходи розрізняються й по принципах побудови градієнтного зображення одного масштабу, тобто , видом застосованого оператора градієнта. Але все-таки ключовим є питання про те, яким образом варто комбінувати наявну многомасштабную інформацію для побудови кінцевої картини границь. Бергольм, один з перших, хто звернувся до теми многомасштабного визначення контурів, пропонує метод, що полягає в послідовному аналізі многомасштабной інформації від грубих масштабів до точного. Такий підхід дозволяє значно зменшити вплив шуму, і в такий спосіб уникнути помилкового визначення контурів одержуваних внаслідок присутності на зображенні шуму, і, у теж час, дає прийнятну картину границь. Однак недоліком даного методу є можливий поділ контурів, обумовлених на грубих масштабах, на трохи окремих при переході до більше точного масштабу. Стратегії розглядання градієнтних зображень від грубих масштабів до точного також дотримуються й інші автори [6]. Однак у тих випадках, коли зображення містить невеликі об'єкти з різкими границями, точне визначення границь цих об'єктів, при русі від грубих масштабів д точних, нам представляється скрутним, тому що на градієнтних зображеннях грубого масштабу виникає значне переміщення положення різких контурів.

Мал. 4. (а) Профиль вихідного зображення. (б) Градієнтне зображення точного масштабу. (в) Градієнтне зображення грубого масштабу. (г) Многомасштабне градієнтное зображення

Інші автори дотримуються підходу, при якому остаточна картина границь складається на основі аналізу градієнтних зображень від точних масштабів до не точних. При цьому, основними завданнями при такому підході є зменшення впливу шуму, до якого чутливі оператори градієнта малого розміру, і комбінування границь, отриманих на точних масштабах, із плавними границями, які визначаються лише на великих масштабах. При успішному рішенні цих проблем підхід до аналізу градієнтних зображень від точних масштабів, представляється нам найбільш кращим для багатьох практичних випадків, у яких необхідно досить точне визначення контурів об'єктів. Характерні приклади таких завдань - це сегментація сканованих зображень сторінок книг, газет, журналів, що містять велику кількість об'єктів невеликого розміру, наприклад, букв і символів. Завдання сегментування таких зображень залишається, як і раніше, актуальної, особливо, для випадку кольорових зображень[7].

Багато методів сегментації, засновані на визначенні контурів об'єктів, наприклад, ватершед-перетворення, використають як основу для проведення сегментації градієнтів зображення. Однак пропоновані в літературі методи многомасштабного визначення контурів дають як результат уже готову картину контурів, а не складене на основі многомасштабной інформації комбіноване градиінтне зображення, доступне для подальшої обробки. Тому, розробка методу, що дозволяє одержати градиєнтне зображення, складене на основі многомасштабной інформації, що далі можна було б використати в різних методах сегментації, заснованих на обробці градиентного зображення.

Багатомасштабний градієнтський аналіз

В результаті оператора градієнта, використовуваного для побудови градиєнтного зображення певного масштабу, був обраний дискретний випадок диференціального оператора Гаусса, тобто , першої похідної функції Гаусса певної на площині . Відомо, що диференціальний оператор Гаусса є єдиним оператором, що має необхідними для многомасштабного диференціювання зображень властивостями [8].

Основою стратегії аналізу многомасштабной інформації нами була обрана підхід послідовного комбінування градиентных зображень від точних масштабів до грубого. При розгляді точних масштабів основною проблемою є великий вплив шуму на градиентное зображення, на грубі ж масштабах велика помилка зсуву положення контурів об'єктів, особливо різких, від їхнього реального місця розташування. Тут ми запропонуємо підхід, що дозволяє уникати помилки зсуву положення контурів, у наступній главі ми запропонуємо метод, що дозволяє уникати вплив шуму.

Розглянемо для простоти, спочатку, одномірний випадок застосування диференціального оператора Гаусса різного масштабу для профілю зображення, що містить різку й плавну границі. На мал.4 показані випадки застосування оператора Гаусса точного й грубого масштабів. На мал.4а наведений профіль зображення, що містить різку й плавну границі об'єктів. При малому масштабі градиентного оператора (мал. 4б) положення різкої границі на профілі вихідного зображення відповідає значному сплеску інтенсивності на градиентном зображенні, однак для плавної границі сплеск інтенсивності значно менший, чим для різкої границі. З мал. 4в, що відповідає великому масштабу застосування диференціального оператора, можна помітити, що, зі збільшенням масштабу інтенсивність плавної границі на градиентном зображенні буде рости. Однак на градиентном зображенні малого масштабу її інтенсивність ще досить мала. Мала інтенсивність крапок контуру на градиентном зображенні може бути причиною втрати контуру при подальшому застосуванні до градиентному зображення методів виділення контурів. Тому при побудові градиентного зображення бажано одержувати найбільшу можливу інтенсивність крапок контуру. При великому масштабі градієнтного зображення (мал. 4в) інтенсивність плавної границі стає вже досить великий, далі, при збільшенні масштабу, залишається практично постійної. Неважко показати, що інтенсивність границі стає близької до максимально можливого, коли розмір маски диференціального оператора Гаусса досягає реальної ширини границі. Отже, для одержання максимального відгуку на градієнтном зображення для границі ширини достатнє застосування оператора градієнта маштаба не меншого чим s > WE , де s - параметр масштабу .

З малюнків 4(б) і 4(в) можна побачити, що ширина сплеску інтенсивності для різкої границі зі збільшенням масштабу збільшується й стає більшої, у порівнянні із шириною сплеску інтенсивності для цієї ж границі на зображенні малого масштабу. При цьому, максимальна величина сплеску інтенсивності залишається приблизно на одному рівні. Величину ширини сплеску інтенсивності WІ на градиентном зображенні масштабу s границі, яка має реальну ширину шляхом простих обчислень можна оцінити як W = WE + 2s. Отже, зі збільшенням масштабу s ширина сплеску інтенсивності W для границі шириною збільшується й може привести до його накладення на відгук від іншої сусідньої границі. Це й приводить до помилок зсуву границь на градієнтних зображеннях більших масштабів - сусідні, близько розташовані до один одному границі можуть зливатися в одну. У теж час, для визначення границі, тобто , для одержання максимально можливого відгуку, достатнє застосування диференціального оператора масштабу рівного реальній ширині границі. Таким чином, ми показали, що для зображень, що містять одночасно різкі й плавні границі, що часто зустрічається на практиці, застосування оператора одного масштабу або недостатньо для визначення плавних границь, або дає більшу помилку положення різких границь об'єктів[9].

Пропонується наступний підхід до рішення даної проблеми, і представляємо наступний метод комбінування многомасштабной інформації при послідовному аналізі градієнтних зображень від точних масштабів до грубого. Починати побудова многомасштабного градієнтного зображення треба з масштабу s0, що відповідає найменшій передбачуваній ширині границі. Як уже було сказано вище, для визначення границі ширини необхідне застосування масштабу не меншого чим ширина границі s > WE . Якщо найменша ширина границі невідома, то починати треба з найменшого можливого масштабу.

Іншими словами, для усунення ефекту "розширення границь" при просуванні до більших масштабів, ми забороняємо обчислення градієнта більшого масштабу в крапках, що прилягають до вже відомих границь ближче чим розмір масштабу градієнта. Тим самим, ми не одержуємо помилкові значення градієнта поблизу відомих границь і, у результаті, можемо уникнути помилки зсуву або з'єднання границь на більших масштабах. Дана послідовність дій завершується на деякому великому масштабі smax, розмір масштабу якого характеризує найбільшу можливу ширину границі об'єкта.

Loading...

 
 

Цікаве