WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Перетворювач опір - часовий інтервал - Курсова робота

Перетворювач опір - часовий інтервал - Курсова робота

Оскільки у розроблюваного приладу досить великий діапазон опорів область його застосування значно розширюється і дає йому значні переваги над аналогами.

Як перетворювач опору у тривалість використаємо очікуючий мультивібратор. Мультивібратори. Коливання прямокутної форми на мультивібраторах виникають за рахунок позитивного зворотного зв'язку через активний електронній елемент: транзистор, операційний підсилювач, тлогічний елемент, тиристор. Саме тому основними параметрами прямокутних імпульсів є: частота (тривалість), амплітуда і їх стабільність залежать від характеристик активного елемента – напруга живлення, порогового рівня, швидкодії тощо.

Найчастіше в наш час використовують мультивібратори на логічних елементах інтегральних мікросхем, що пов'язано з їх використанням в цифровій апаратурі.

Стабільність тривалості чи періоду повторення імпульсів в мультивібратори на логічних елементах невелика (приблизно 3% при зміні температури на 10С), оскільки стабільність порогового рівня ТТЛ-мікросхем низька.

Оскільки перетворювачем є очікуючий мультивібратор, то необхідно створити сигнали, які будуть його запускати саме тому використаємо для запуску перетворювача автоколивальний генератор прямокутних імпульсів. Таким генератором буде автогенератор на основі ОП.

Сигнал, який буде отримано на виході первинного перетворювача на жаль не матиме достатню амплітуду по напрузі, саме тому варто використати підсилювач напруги, в якості якого оберемо підсилювач на базі транзистору.

Для підсилення потужності використаємо комплементарний емітерний повторювач.

2.2 Розробка спрощеної структурної схеми

Спрощена структурна схема перетворювача наведена на рисунку 1.

Рисунок 1 – Спрощена структурна схема перетворювача

АМВ – автоколивальний мультивібратор, призначений для створення імпульсів заданої частоти.

ОМВ – очікуючий мультивібратор, призначений для формування імпульсів певної тривалості з визначеною амплітудою. Тривалість вихідних імпульсів залежить від змінного опору.

ПН – підсилювач напруги на БТ, здійснює стабілізацію рівня вихідної напруги попереднього каскаду.

ПП – підсилювач потужності, використовується для забезпечення потужності на навантаженні.

2.3 Попередній розрахунок автоколивального мультивібратора

Вхідні дані:

Частота модуляції fmax= 20кГц

Визначимо напругу живлення за заданою амплітудою вихідних імпульсів:

=(1,2...1,4)=24В, (1)

, (2)

, (3)

= 400 (кГц),

, (4)

Отже за допомогою автоколивального мультивібратора проводимо генерацію імпульсів з частотою 20кГц, які виступають в ролі запускаючи для наступного каскаду.

Виберемо ОП К574УД2Б

Основні параметри:

нА вхідний струм

В максимальна вихідна напруга

Ом вихідний опір

МГц гранична частота

Діапазон робочих температур =(45-70)С

2.4 Попередній розрахунок очікуючого мультивібратора

Даний перетворювач виконує перетворення опору у тривалість.

Наведемо можливі межі опору: (Ом), (МОм),

Розрахуємо динамічний діапазон.

D= , (5)

D=.

Оскільки заданий діапазон є більшим за 100, то виконаємо його розбиття на під діапазони:

D= , (6)

D==100,

D=, (7)

D==100.

D=, (8)

D==100.

Таким чином при проведенні подальших розрахунків необхідно врахувати ці під діапазони при виборі елементів даного вузла схеми.

Для такого ОМВ тривалість сформованого імпульсу:

. (9)

За умовою

Задаємо

(10...20), (10)

400 (кГц).

>, (11)

=(1,2...1,4),

=24 (В).

Для операційного підсилювача:

(10...20), (12)

400 (кГц).

Спираючись на проведені розрахунки обираємо ОП: К574УД2Б

2.5 Попередній розрахунок ПП

В якості підсилювача потужності використано комплементарний емітерний повторювач. Принцип дії: VT2 відкритий і працює як емітерний повторювач коли на вході каскаду позитивний сигнал. У цей час VT3 закритий.

При негативному сигналі навпаки. Початкові дані:

, ,

max = (13)

max=.

Розрахуємо максимальну вихідну потужність:

Рmax=, (14)

Рmax==50 (Вт).

З попередніх розрахунків

А отже необхідно обрати транзистор з потужністю на колекторі не менше 100Вт, струмом колектора 5А.

На основі розрахунків оберемо транзистори VT2 та VT3.

КТ864А n-p-n: КТ865А p-n-p:

=100Вт =100Вт - максимальна колекторна потужність

=12А =12А – максимальний колекторний струм.

=160В =160В - максимальна колекторна напруга.

=40...200 =40...200 - коефіцієнт підсилення.

=3МГц =3МГц – гранична частота.

=2В =2В – максимальна напруга насичення.

=2А =2А – струм навантаження.

T=-60...+125С T=-60...+125С – робоча температура

2.6 Попередній розрахунок ПН

ПН використовується для стабілізації рівня вихідної напруги на перед кінцевому каскаді. Для визначення параметрів проведемо наступні розрахунки.

Визначимо коефіцієнт підсилення по напрузі:

, (15)

.

Оскільки попередній каскад виконує перетворення опору у тривалість імпульсу, то хоч попередній каскад і в ідеалі не повинен викликати зміну вхідного імпульсу по амплітуді варто стабілізувати рівень вихідної напруги та підсилити його до рівня 20 В. Це і буде виконувати даний каскад.

Виберемо активний елемент підсилювача потужності спираючись на наступні дані:

Оскільки коефіцієнти підсилення транзисторів VT4 та VT5 Кпр=25дб=300, то :

Рвх=, (16)

Рвх .

,

Ікмах =.

Заданим параметрам відповідає транзистор n-p-n КТ3107А

Основні параметри транзисторів: КТ3107А:

=300мВт – максимальна колекторна потужність.

=100мА – максимальний колекторний струм.

=380/800 – коефіцієнт підсилення.

=200МГц- гранична частота, T=-60...+125С - робоча температура.

2.7 Розробка детальної структури схеми

Детальна структура схеми представлена на рисунку 2.

Рисунок 2 - Розробка детальної структури схеми

АМВ – автоколивальний мультивібратор, призначений для створення імпульсів, які є запускаючи ми для ОМВ і частота цих імпульсів 20кГц.

ОМВ – очікуючий мультивібратор, призначений для формування імпульсів певної тривалості з визначеною амплітудою. Тривалість вихідних імпульсів залежить від опору. Даний каскад перетворює опір в тривалість імпульсів, але при цьому здатен дещо спотворювати амплітуду вихідного сигналу, тому наступним каскадом є підсилювач напруги на БП.

ПН – підсилювач напруги на БТ, здійснює стабілізацію вихідної напруги попереднього каскаду до величини 20В. Також призначений для збільшення струму, який є вхідним для наступного каскаду. Виконано на підсилювальному каскаді зі спільним емітером на БТ.

ПП – підсилювач потужності, використовується для забезпечення потужності на навантаженні. Виконаний на комплементарному емітерному повторювані, на симетричних біполярних транзисторах.

Напруга, що пропорційна опору, змінюється від 0 до 20В, тоді амплітуда пилковидної напруги має теж змінюватися від 0 до 20В. Період повторення складає 100мкс. Формування пилковидної напруги здійснимо за допомогою генератора на основі інтегратора з періодичним шунтуванням ключових елементів заданого кола. Для виключення впливу елементів схеми на процес формування пилковидної напруги на виході генератора включимо повторювач на ОП.

Згідно ТЗ, амплітуда вихідного імпульсу має бути не менше 20В на опорі навантаження 4Ом, а також враховуючи той факт, що мінімальна тривалість імпульсу складає 1 мкс, застосуємо в якості каскада повторювач.Це дасть можливість узгодити навантаження з виходом компаратора і отримати малі тривалості фронтів вихідного імпульса .

3. Електричні розрахунки

3.1 Розрахунок підсилювача потужності

Підсилювач потужності використовується для забезпечення потужності на навантаженні.Для розрахунку його параметрів його використаємо дані.

Вихідні дані:

=4 Ом;

=5 А;

=20 В;

=100 Вт;

Схема підсилювача потужності зображена на рисунку 3.

Рисунок 3 - Схема ПП електрична принципова

Розрахуємо напругу живлення =(1,2...1,4) =24 (В),

Визначення залишкової напруги на колекторі.

Loading...

 
 

Цікаве