WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Перетворювач ємність - тривалість імпульсу - Курсова робота

Перетворювач ємність - тривалість імпульсу - Курсова робота

Оскільки коефіцієнти підсилення транзисторів VT4 та VT5 Кпр=4дб=80, то:

Рвх=, (9)

Рвх==0,3 (Вт).

Рк (Вт)

(В)

Визначимо максимальний колекторний струм

Ікмах= , (10)

Ікмах = (мА).

де Pk – максимальна потужність колектора;

Umax – максимальна вихідна напруга.

Заданим параметрам відповідає транзистор n-p-n типу КТ3117A

Основні параметри транзистора КТ3117A:

=300 мВт

=400 мА

=50 В

=40/200

=10 мкА

=300 мГц

=0,6 В

=500 мА

Т=-60..+100 С

Отже транзистор VT3 типу n-p-n КТ3117А.

2.6 Попередній розрахунок АМВ

Вхідні дані: fmax= 30 (кГц)

Амплітуда вихідного сигналу не повинна перевищувати 30В, тобто може бути у діапазоні від 0,5 до 30В. Нехай для даного каскаду =5В.

Задамося напругою живлення

=(1,4...1,2) , (11)

Eж=12 (В).

, (12)

=0,6 (МГц).

(В)

Оскільки коефіцієнти підсилення транзистора VT3 Кпр=4дб=80, то:

Рвх=, (13)

Рвх = (мВт).

Рк мВт

(В)

Ікмах=, (14)

Ікмах = (мА).

На основі розрахунків оберемо транзистори VT1, VT2 типу n-p-n КТ315Ж:

(при =10кОм) =15В

=50 мА

=100 мВт

=10 пФ

=100 мГц

Дані транзистори цілком задовольняють умовам.

2.7 Розробка детальної структури схеми

На рисунку 4 зображено розробку детальної структури схеми

Рисунок 4 - Розробка детальної структури схеми

АМВ – автоколивальний мультивібратор, призначений для створення імпульсів заданої частоти 30 кГц.

ОМВ – очікуючий мультивібратор, призначений для формування імпульсів певної тривалості з визначеною амплітудою. Тривалість вихідних імпульсів залежить від ємності конденсатора, діапазон якої коливається в межах 1нФ..1мкФ.

ПН – підсилювач напруги , здійснює подальше підсилення вихідної напруги попереднього каскаду до заданої величини 30 В. Цей каскад також здійснений на операційному підсилювачі з диференційним входом .

ПП – підсилювач потужності, використовується для забезпечення потужності на навантаженні, опір якого дорівнює 10 Ом.

В результаті розрахунків отримали активні елементи каскадів та межі деяких величин. Всі назви елементів та межі величин зазначені на рисунку4.

3. Електричні розрахунки

3.1 Розрахунок підсилювача потужності

3.1.1 Вихідні дані

=10Ом

=3А

=30В

=90Вт

Електричні розрахунки починаємо з кінця схеми, тобто з підсилювача потужності.

      1. Принципова схема ПП

На рисунку 5 зображена принципова схема підсилювача потужності.

Рисунок 5 - Принципова схема ПП

3.1.3 Визначення залишкової напруги на колекторі

Проведемо розрахунок для транзистора VT4

, (15)

Еж=24 (В).

де Uke max - максимально допустима напруга колектор-емітер;

Еж-напруга живлення.

Задамося

, (16)

Uke0=12 (B).

Обираємо з вихідної характеристики транзистора:

при

З вхідних характеристик: при та

Розрахуємо R9 :

, (17)

(Ом).

R10 С2-23-12 Ом, Р=0,125Вт, 1%

    1. Розрахунок підсилювача напруги

На рисунку 6 зображено схему електричну принципову підсилювача напруги

Рисунок 6 – Схема ПН електрична принципова

Вхідні дані:

Транзистор КТ3117А

=300 мВт

=50 В

В

Оберемо напругу живлення

, (18)

(В).

Оскільки транзистор n-p-n типу, напруга подається додатня.

Задамося

, (19)

(В).

Обираємо з вихідної характеристики транзистора: при знаходимо

З вхідних характеристик: при та

Задамося

, (20)

(В).

Розрахуємо R8 :

, (21)

(Ом).

R8 С2-23-500 Ом, Р=0,125Вт, 1%

Розрахуємо R9 :

, (22)

(Ом).

R9 С2-23-82 Ом, Р=0,125Вт, 1%

Проведемо розрахунок базового опору R7

, (23)

(кОм).

R7 С2-23-8,2 кОм, Р=0,125Вт, 1%

Проведемо розрахунок конденсаторів.

-блокуючий конденсатор.

, (24)

(Ф).

К75-10-10 мкФ, 20%

3.3 Розрахунок елементів ОМВ

На рисунку 7 зображена схема очікувального мультивібратора.

Рисунок 7 – Схема ОМВ

Оскільки тривалість імпульсів для такого мультивібратора,

(25)

а отже тривалість імпульсу вихідного сигналу залежить від ємності прямо пропорційно. Можливі межі тривалості розрахуємо після того, як будуть обрані всі елементи. напруга насичення ОП на виході 4.7 В.

Оскільки даний каскад повинен лише змінювати тривалість імпульсів, а не підсилювати сигнал по напрузі, то виберемо номінали резисторів так, щоб коефіцієнт підсилення по напрузі даного каскаду

, (26)

.

Оскільки , а ємність змінна, то необхідно вибрати номінали так, щоб .

(27)

Максимальне значення опору ємності

, (28)

(Ом).

Оскільки , то величиною опору ємності можна знехтувати

, (29)

.

Для даних опорів враховуючи умову Ом оберемо стандартні номінали для цих опорів:

С2-23-1,6МОм, Р=0,125Вт, 1%

Проведемо розрахунок меж тривалості вихідних імпульсів в залежності від меж ємності

, (30)

.

, (31)

.

де Uнас-напруга насичення;

Сmax – максимальна задана межа ємності;

Сmin - мінімальна задана межа ємності.

Отже тривалість імпульсів в залежності від ємності лежатиме у межах: 149мкс...0,149мкс

Сх- конденсатор змінної ємності за допомогою якого ми можемо змінювати режими, але потрібний ще зразковий конденсатор С0, з яким ми будемо зрівнювати.

Тобто при вимірюванні Сх беруть зразковий конденсатор С0, так як постійна часу кола розрядки конденсатора τ є інтервал часу, по закінченні якого напруга на конденсаторі змінюється в е раз, то інтервал Δt= τ= СхС0. формується за допомогою зрівнюючого пристрою ЗП.

Тому вибираємо конденсатор С0 з номіналом ємності в діапазоні 10 нФ....1мкФ, але більшого класу точності. С0 К77-1-1мкФ,0,5 %

3.4Розрахунок елементів АМВ

На рисунку 8 зображена схема автоколивального мультивібратора

Рисунок 8 - Схема АМВ

Вхідні дані:

VT1 та VT2 типу КТ315Ж

=(1,2...1,4), (32)

Eж=12 (В).

Оскільки наступний каскад має вхідний опір , то для розрахунку R1, R4 скористаємось наступною формулою:

Для даного транзистора з вихідної характеристики транзистора:

при В знаходимо: мкА, мА

З вхідних характеристик: при та

Задамося

, (33)

=1,2 (В).

, (34)

(кОм).

Оберемо резистори: R1, R4 С2-23-2 кОм, Р=0,125Вт, 1%

Так як мінімальне підсилення за струмом β=1, то:

, (35)

(кОм).

Оберемо резистори: R2, R3 С2-23-1 кОм, Р=0,125Вт, 1%

Оберемо конденсатори

С1=С2=, (36)

С1=С2=2,4 10-3 (Ф)

С1,С2 К40У-9-0,22 мкФ ,20%

4. Визначення метрологічних характеристик

Після розрахунку зовнішніх елементів необхідно враховувати неідеальність ОП. При цьому , , . кОм, Ом. R6=1,6 МОм R5=1,6 МОм

Реальний коефіцієнт підсилення реального ОП можна визначити за формулою:

, (37)

.

Визначимо похибку:

, (42)

.

Тобто значення реальної похибки не перевищує значення допустимої похибки, яка є однією із умов завдання:. Отже, можна зробити висновок, що задана в умові точність витримана.

5. Моделювання одного з вузлів

Для перевірки правильності роботи схеми проведемо моделювання одного в вузлів. Для моделювання оберемо очікуючий мультивібратор, який виступає у ролі перетворювача ємності у тривалість імпульсів. Підставимо всі обрані у процесі розрахунків номінали елементів та знімемо частотні характеристики на виході вузла при різній ємності.

На рисунку 9 зображено модель очікувального мультивібратора в пакеті прикладних програм WorkBench

Рисунок 9 - Модель ОМВ в пакеті WorkBench

На рисунку 10 наведено зміну часового інтервалу при різних значеннях Сх

аб

Рисунок 10 - зміна часового інтервалу при різних значеннях Сх: а - значення часового інтервалу при заданому значенні ємності, б - значення часового інтервалу при зміні значення ємності на інше, амплітуда при цьому залишається незмінною.

Висновки

В даному курсовому проекті докладно були описані головна мета, основне призначення та області застосування перетворювача ємність-часовий інтервал. Також була розглянута поетапна розробка та розрахунок кожного з елементів схеми, приведені структурні схеми окремих каскадів.

В результаті проведених розрахунків була розроблена структура перетворювача, проведено розрахунок опорів та ємностей, ОП та транзисторів, підібрані елементи та їх номінали, проведено моделювання одного з вузлів схеми електричної принципової, визначені метрологічні характеристики і вирахувано, що похибка перетворення не перевищує 1%.

Графічна частина містить схему електричну принципову, створену згідно стандартів.

Література

  1. Терещук Р.М. Полупроводниковые приемно-усилительные устройства.- Киев: Наук.думка, 1988.- 800с.

  2. Степененко И.П. Основи мікроелектроніки.- М.: Сов. Радио, 1980 - 456 с.

  3. Харовіц П. Н. Мистецтво схемотехніки.- М.: Мир. 1986. – 55 с.

  4. Довідник. Вживання інтегральних мікросхем в електронній обчислювальній техніці.- М.: Радіо і зв'язок, 1987. –400 с.

  5. Наумов Ю.Е. Інтегральні схеми.- М.:Сов.радио, 1970. –112 с.

  6. Никитин В.А. Книга начинающего радиолюбителя.–М.: Патриот, 1991.-464с.

7. Бокуняев А.А. Справочная книга радиолюбителя-конструктора.-М.: Радио и связь,1990. – 624 с.

Loading...

 
 

Цікаве