WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Метод структурно-логічного кодування - Курсова робота

Метод структурно-логічного кодування - Курсова робота

Аналіз фрагментарного декодування СЛК, на основі залежності при n=3,4,5 представлений на рис.3.6, показав, що вплив розрядності n вершин куба на ймовірність помилки декодування РМІД практично відсутній. У достатньо важких каналах при фрагментарне декодування СЛК зіставно по ймовірності помилки декодування з згортковим кодом, що виправляє помилки t 2, що указує на можливість успішного використання кодів СЛК в реальних каналах передачі даних.

2. Визначення ймовірності помилкового декодування ЄКФ

Використання МІД як єдиного кодуючого формату, тобто кодової комбінації СЛК, як це витікає з аналізу, не є достатньо ефективним, оскільки фрагментарне використання коду СЛК поступається по ймовірності помилки декодування відомим коректуючим кодам, зокрема згортковим кодом, в каналах з ймовірністю помилки .

Нехай в якості ЄКФ прийнята послідовність вершин куба 3, тобто n=3. Прийнятий куб 3 містить два мінімальні інтервали декодування МІД1 і МІД2, що складаються з 4-х вершин кожен (рис.1).

Нехай всі вершини МІД1 повністю відновлені, що указує на те, що було спотворене не більше однієї вершини в МІД1. Тоді для повного відновлення всіх вершин в МІД2 необхідне знання відповідної змінної розгортання. Як видно з рис.5 для визначення цієї змінної необхідно і достатньо, щоб тільки одна з 4-х вершин МІД2 була б прийнята коректно, оскільки кожна з вершин МІД1 пов'язана з відповідною вершиною МІД2 по однаковій змінній (на рис. 3.7 такою змінною виступає ). Тому для будь-якої з вершин МІД2 (5,6,7,8), прийнятої коректно, можливо визначення змінної , що розгортає МІД1 в ЄКФ, тобто куб 3.

Інші три вершини МІД2 можуть бути прийняті з помилками на етапі визначення змінної розгортання , оскільки надалі на цьому етапі відновлення всі помилки у вершинах МІД2 виправляються. У межах МІД в якості породжуючих використовуються 2 змінні розгортання (у нашому прикладі це і ). Одна змінна, що залишилася ( у нашому прикладі) використовується для повного відновлення всіх вершин в МІД2, а отже і всього ЄКФ. Якби в якості ЄКФ виступав куб, то, при повністю відновлених вершинах одного МІД, для правильного прийому всіх вершин

ЄКФ необхідне знання відповідних змінних розгортання на кожному етапі

перетворення МІД в ЄКФ кубів.

В загальному випадку таких змінних повинно бути n-2, оскільки в МІД використовується 2 змінні розгортання з всієї кількості . У зв'язку з вищевикладеним справедлива.


МІД1 МІД2

Рис.1

Для повного відновлення всіх вершин ЄКФ куба Еп необхідно і достатньо при коректно прийнятому одному МІД наявність хоча би однієї, прийнятої безпомилково вершини в межах відновлюваного куба на кожному етапі перетворення.

Це дійсно так, оскільки наявність однієї правильної вершини в межах відновлюваного куба, окрім відновлених вершин на попередніх етапах, дає можливість визначити змінну відновлення однозначно.

Для n-розрядної вершини ймовірність помилкового прийому з урахуванням одночасності збою розрядів і правильного прийому n- розрядів складе . Число варіантів збою розрядів очевидно рівно . Зрозуміло, що кількість збитих розрядів в межах оцінки вершини може змінюватись від 1 до n. У такому разі ймовірність помилкового визначення змінної відновлення із-за неправильного прийому однієї вершини у межах відновлюваного n- мірного куба буде рівна

(2)

Ймовірність Р' визначає, по суті справи, ймовірність помилкового декодування чергового відновлюваного МІД в межах ЄКФ куба . Тоді ймовірність помилкового декодування ЄКФ куба з урахуванням ймовірності помилки РМ1Д(3.25) буде визначаться таким чином.

Ймовірність помилкового декодування ЄКФ визначається ймовірністю помилки МІД РМ1Д і ймовірністю помилки змінної відновлення

(3)

де РМ1Д - ймовірність помилки МІД п -мірного куба Е, Р' - ймовірність помилки змінної відновлення .

Використовуючи вираз (3) побудуємо залежність (рис.2) для У тих же координатах розмістимо залежність для згорткового коду, що виправляє всі одиночні та двійні помилки. У відміну від фрагментарного декодування СЛК аналіз залежностей показав, що з ростом ,тобто із збільшенням мірності куба ЄКФ, кодової комбінації кода СЛК, значно збільшується виграш у завадостійкості, тобто зменшується ймовірність декодування .

Порівнюючи Р для згорткового коду і РЕКФ для n=3,4,5 помічаємо, що для n=3 при (ймовірність збою біта в каналі з незалежними помилками) виграш складає в першому наближенні 1 порядок

(Р=210,РЄКФ=210). Для n=4 виграш складає 2 порядки (Р=210 , РЄКФ=1,510 ), а для n=5 - більш, чим 3 порядки (Р=210, РЄКФ=810). У важкому каналі з виграш в завадостійкості для СЛК коду складає від 0,5 порядку (n=3) до 1,5 порядку (n=5). Крім того, із зменшенням вірогідності помилки в каналі до виграш в завадостійкості для коду СЛК, принаймні, не зменшується, особливо для n=4,5 , тобто як нахил прямих декодування до осі абсцис в порівнянні з згортковим кодом зменшується. Таким чином, використання структурно-логічних кодів в каналах з незалежними помилками забезпечує істотні переваги в завадостійкості, особливо у важких каналах з і каналах середньої тяжкості з .

Висновок

Проведений аналіз основних особливостей коректуючих властивостей структурно-логічних кодів інфімумних диз'юнктивних нормальних форм БФ для каналів з незалежними помилками.

Визначена ймовірність помилкового декодування ЄКФ коду СЛК

де - ймовірність помилки мінімального інтервалу декодування (МІД) мірного кубу ,

- ймовірність помилки змінної відновлення.

Показано, що змінні кодів СЛК в каналах з незалежними помилками дозволяє отримати значний виграш в завадостійкості даних, причому коди СЛК достатньо впевнено працюють в каналах з ймовірністю помилки тобто достатньо тяжких каналах.

Список використанної літератури

  1. Іванов Ю.Д., Пампуха І.В., Захарова О.С., Жиров Г.Б. Метод структурно-логічного кодування інфімумних диз'юнктивних нормальних форм булевих функцій в базисі куба //Збірник наукових праць Військового інституту Київського національного університету ім. Тараса Шевченка.-К.,2006.-№5.-с.46-49.

  2. Лєнков С.В., Боряк К.Ф., Іванов Ю.Д., Селюков О.В. Метод представлення дискретної інформації на основі інфімумних диз'юнктивних нормальних форм булевих функцій//Збірник наукових праць Військового інституту Київського національного університету імені Тараса Шевченка.-К.,2008.-№11.-с.90-97.

  3. Іванов Ю.Д., Пампуха І.В., Перегудов Д.О., Захарова О.С. Основи реалізації природньої структурно-логічної надмірності диз'юнктивних нормальних форм представлення данних // Вісник Київського національного університету імені Тараса Шевченка. Військово спеціальні науки -К.,2007.-№14.-с.12-15.

  4. Іванов Ю.Д., Пампуха І.В., Осипа В.О., Охрамович М.М. Узагальнений метод структурно-логічного декодування інфімумних форм подання булевих функцій //Збірник наукових праць Військового інституту Київського національного університету імені Тараса Шевченка.-К.,2006.-№4.-с.48-53.

  5. Лєнков С.В., Іванов Ю.Д., Пампуха І.В., Боряк К.Ф. Особливості корегуючих властивостей структурно-логічних кодів // Науково-технічний журнал "Захист інформації".- К.,2007.-№4(36).-с.75-81.

Додаток

Блок-схема алгоритму визначення ймовірності помилки МІД n-мірного куба Е, та ймовірність помилкового декодування ЄКФ

Loading...

 
 

Цікаве