WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Електроніка та мікропроцесорна техніка - Курсова робота

Електроніка та мікропроцесорна техніка - Курсова робота

Контрольні запитання:

  1. Що називають фотодіодом?

  2. Що таке світлодіод?

  3. Принцип роботи та призначення фото- та світло діодів?

  4. Яким чином відбувається маркування?

Інструкційна картка №7 для самостійного опрацювання навчального матеріалу з дисципліни "Основи електроніки та мікропроцесорної техніки"

І. Тема: 2 Електронні прилади

2.3 Транзистори. Тиристори

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

  • Як впливає температура на роботу транзистора;

  • Вплив частоти на транзистор;

  • Переваги та недоліки роботи транзистора в ключовому режимі.

ІІІ. Студент повинен уміти:

  • Вибирати транзистори, на які впливає температура та частота;

  • Застосовувати транзистор в режимі ключа.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [2, с. 134-139].

VІ. Запитання для самостійного опрацювання:

  1. Температурні і частотні характеристики транзисторів.

  2. Транзистор у режимі ключа.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

  1. Який має вплив температура на роботу транзистора?

  2. Частотні властивості транзистора?

  3. В чому суть роботи транзистора в ключовому режимі?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Транзистори. Тиристори

План:

  1. Температурні і частотні характеристики транзисторів.

  2. Транзистор у режимі ключа.

Література

1. Температурні і частотні характеристики транзисторів

Діапазон робочих температур транзисторів, що визначається властивостями р-п переходів, такий же, як і у напівпровідникових діодів. Особливо сильно на роботу транзисторів впливає нагрів і менш істотно - охолоджування (до - 60°С). Дослідження показують, що при нагріві від 20 до 60° З параметри площинних транзисторів змінюються таким чином: rк падає приблизно удвічі, rб - на 15-20%, а rезростає на 15-20%. Уявлення про вплив нагріву на h- параметри дають графіки мал. 7.17, а, побудовані для малопотужного площинного транзистора, включеного по схемі із загальною базою. Окрім зміни значення основних параметрів транзистора, нагрів викликає зсув вихідних характеристик і зміна їх нахилу (мал. 7.17, б), що також порушує нормальну роботу приладу.

Мал. 7.17. Вплив температури на h-параметри малопотужного площинного транзистора (а) і форму його вихідних характеристик (б)

Особливо істотний вплив на роботу транзистора при нагріві надає струм Iкбо. Наближене значення струму при нагріві можна визначити з рівності

де Iкбоt , - величина Iкбо при підвищеній температурі; IкБон - величина Iкбо при нормальній температурі (20 °С); Δ - різниця температур при нагріві транзистора.

Для практичних розрахунків можна прийняти, що при підвищенні температури на кожні 10°С струму Iкбо зростає приблизно удвічі.

Нестабільність режиму транзистора, обумовлена струмом Iкбо дуже істотна, оскільки зворотний струм колектора в значній мірі впливає на струми емітера і колектора, а, отже, на підсилювальні властивості транзистора.

Найчастіше для роботи при підвищених температурах застосовуються кремнієві транзистори. Гранична робоча температура у цих приладів складає 125...150°С. З цією ж метою використовується і ряд нових напівпровідникових матеріалів, з яких особливий інтерес представляє карбід кремнію. Прилади, виготовлені на карбіді кремнію, зможуть нормально працювати до температур 500...600°С.

На частотні властивості транзисторів більший вплив роблять ємності р-п переходів. Із збільшенням частоти опір ємності зменшується і шунтуюча дія ємностей зростає. Тому Т-образна еквівалентна схема транзистора на високих частотах, окрім чисто активних опорів rе, rб і rк, містить ємності Се і Ск, що шунтують емітерний і колекторний переходи. Особливо шкідливий вплив на роботу транзистора надає ємність Ск оскільки на високих частотах опір ємності 1/ω0СК виявляється значно менше, ніж опір rк, і колекторний перехід втрачає свої основні властивості. В даному випадку вплив ємності Ск аналогічно впливу ємності, що шунтує р-п перехід в площинному напівпровідниковому діоді.

Другою причиною погіршення роботи транзистора на високих частотах є відставання по фазі змінного струму колектора від змінного струму емітера. Це обумовлено інерційністю процесу проходження носіїв заряду через базу від емітерного переходу до колекторного, а також інерційністю процесів накопичення і всмоктування зарядів в базі.

Час прольоту носіїв через базу τпр у звичайних транзисторів складає приблизно 0,1 мкс. Звичайно, це час дуже мало, але на частотах порядку одиниць - десятків мегагерц стає помітним деяке зрушення фаз між змінними складовими струмів Іе і Ік. Це приводить до збільшення змінного струму бази і, як наслідок, до зниження коефіцієнта посилення по струму.

Цеявище ілюструється векторними діаграмами, приведеними на мал. 7.18. Перша з них відповідає низькій частоті, на якій всі струми практично співпадають по фазі, а коефіцієнт ρ має найбільшу величину.

Мал. 7.IS. Векторні діаграми струмів транзистора на різних частотах фаз ф між цими струмами.

Оцінюючи частотні властивості транзистора, слід враховувати також, що дифузія процес хаотичний. Неосновні носії зарядів, інжектовані емітером в базу, пересуваються в ньому різними шляхами. Тому носії, бази, що одночасно увійшли до області, досягають колекторного переходу в різний час. Таким чином, закон зміни струму колектора може не відповідати закону зміни струму емітера, що приводить до спотворення підсилюваного сигналу.

Необхідно відзначити, що із збільшенням частоти коефіцієнт ρ зменшується значно сильніше, ніж α. Коефіцієнт α знижується лише унаслідок впливу ємності Ск, а на величину ρ впливає, окрім цього, ще і зрушення фаз між Ік і Іе. Отже, схема із загальною базою має кращі частотні властивості, чим схема із загальним емітером.

Для визначення коефіцієнтів посилення потоку на частоті f можуть бути використані формули:

Для розширення частотного діапазону транзисторів необхідно збільшувати швидкість переміщення неосновних носіїв зарядів через базу, зменшувати товщину шару бази і колекторну ємність. При виконанні цих умов транзистори (наприклад, дрейфові) можуть успішно працювати на частотах близько десятків і сотень мегагерц.

2. Транзистор у режимі ключа

Найважливішими елементами сучасних схем автоматики і електронних обчислювальних машин є пристрої релейного типу. Головна особливість їх полягає в тому, що під впливом вхідного сигналу режим роботи таких пристроїв різко (стрибкоподібно) міняється. Це дозволяє здійснювати перемикання, або комутацію, різних електричних ланцюгів схеми.

Loading...

 
 

Цікаве