WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Електроніка та мікропроцесорна техніка - Курсова робота

Електроніка та мікропроцесорна техніка - Курсова робота

Аналогічно працюють транзистори з каналом р-типу, лише полярність напруг повинна бути зворотною.

На рис. 2.25 наведені умовні позначення ПТ з керуючим р-п переходом.

Рис. 2.25 - Умовні позначення ПТ з керуючим р-п переходом:

а) з каналом n-типу, б) з каналом р-типу

Роботу зазначених транзисторів визначають сім'ї ВАХ двох видів: стокові і стік-затворні.

Стокові (вихідні) характеристики, наведені на рис. 2.26 показують залежність струму стоку від напруги стік-витік за фіксованої напруги затвор-витік:

Рис. 2.26 - Стокові ВАХ ПТ з керуючим p-п переходом

На ділянці 1 неробоча ділянка для випадку використання приладу у якості підсилюючого елементу. Тут його використовують як керований резистор.

На ділянці 2 робоча ділянка у режимі підсилення.

Ділянка 3 відповідає пробою приладу.

Стік-затворні (вхідні) ВАХ відображають залежність струму стоку від напруги затвор-витік за фіксованої напруги стік-витік:

Вхідна ВАХ зображена на рис. 2.27.

Рис. 2.27-Вхідна ВАХ ПТ з керуючим р-п переходом

Параметри ПТ з керуючим р-п переходом:

- максимальне значення струму стоку, сягає від десятків міліампер до одного ампера;

- максимальне значення напруги стік-витік, становить до 100 В;

- напруга відтинання ;

-внутрішнійопір;

- крутизна стік-затворної характеристики;

- вхідний опір, становить десятки мегаом.

СІТ-транзистори

У середині 70-х років минулого століття багаторічні дослідження (Японія, США) завершились створенням ПТ із статичною індукцією: СІТ-транзистора. Цей транзистор, будучи по суті ПТ з керуючим р-п переходом, є твердотільним аналогом електронновакуумної лампи - тріода, у якої вихідна характеристика при нульовому значенні сигналу керування за формою нагадує характеристику р-n переходу. З ростом від'ємного значення напруги керування характеристики зсуваються вправо.

На відміну від площинної горизонтальної конструкції ПТ з керуючим р-п переходом, СІТ-транзистор має вертикальну конструкцію. Наприклад, p-шари затвору вводяться в n-шар вертикально. Таке виконання забезпечує приладу роботу при напругах до 2000 В й частотах до 500 кГц. А розміщення на одному кристалі великого числа елементарних транзисторів з наступним їх паралельним з'єднанням забезпечує робочі струми до 500 А - це вже є силовим електронним приладом!

Крім роботи в режимі ПТ, цей транзистор може працювати і в режимі біполярного транзистора, коли на затвор подасться додатне зміщення. При цьому падіння напруги на приладі у відкритому стані зменшується.

Умовне позначення СІТ-транзистора наведене на рис. 2.28.

Рис. 2.28 - Умовне позначення СІТ-транзистора

МДН-транзистори

На відміну від ПТ з керуючим р-п переходом, у яких затвор має безпосередній електричний контакт із суміжною областю струмопровідного каналу, у МДН-транзисторів затвор, що являє собою, наприклад, алюмінієву плівку (Аl), ізольований від зазначеної області шаром діелектрика. Тому МДН-транзистори відносять до класу ПТ з ізольованим затвором. Наявність діелектрика забезпечує високий вхідний опір цих транзисторів (1012 - 1014 Ом).

Частіше у якості діелектрика використовують оксид кремнію і тоді ПТ називають МОН-транзистором (метал - окисид - НП). Такі транзистори бувають із вбудованим і індукованим каналами. Останні більш розповсюджені.

Конструкція МОН-транзистораз індукованим каналом n-типу зображена на рис. 2.29.

Рис. 2.29 - Конструкція МОН-транзистора з індукованим каналом

При позитивній напрузі на затворі відносно витоку поверхневий шар на межі НП з діелектриком збагачується електронами, які притягуються з глибини p-шару (де вони є завдяки тепловій генерації вільних носіїв заряду) до затвору: виникає явище інверсії НП у примежовій зоні, коли p-шар стає n-шаром. Таким чином, між зонами n-шарів наводиться (індукується) канал, по якому може протікати струм від стоку до витоку.

Вихідні ВАХ ПТ з ізольованим затвором подібні до ВАХ ПТ з керуючим р-п переходом, тільки характеристики проходять вище зі збільшенням напруги.

Умовні позначення МДН-транзисторів наведені на рис. 2.30.

Рис. 2.30 - Умовні позначення МДН-транзисторів з каналами: вбудованим n-типу (а); вбудованим р-типу (б); індукованим n-типу (в); індукованим р-типу (г)

ПТ широко використовують як дискретні компоненти електронних пристроїв, а також у складі інтегральних мікросхем.

Контрольні запитання:

  1. На чому ґрунтується принцип роботи уніполярних транзисторів?

  2. Які бувають типи польових транзисторів?

  3. Їх принцип роботи?

  4. Як графічно позначаються польові транзистори?

Інструкційна картка №9 для самостійного опрацювання навчального матеріалу з дисципліни "Основи електроніки та мікропроцесорної техніки"

І. Тема: 2 Електронні прилади

2.4 Електровакуумні та іонні прилади

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

  • Що таке розряд;

  • Види розрядів у газах;

  • Газорозрядні прилади.

ІІІ. Студент повинен уміти:

  • Розрізняти основні газорозрядні прилади прилади.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [5, с. 35-50].

VІ. Запитання для самостійного опрацювання:

  1. Іонні прилади з самостійним розрядом – неонова лампа, стабілітрони, тиратрони тліючого розряду

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

  1. В чому суть роботи газорозрядних приладів?

  2. Які бувають розряди в газах?

  3. Які прилади належать до приладів самостійного розряду?

  4. Які прилади належать до приладів тліючого розряду?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Електровакуумні та іонні прилади

План:

  1. Іонні прилади з самостійним розрядом – неонова лампа, стабілітрони, тиратрони тліючого розряду

Література

1. Іонні прилади з самостійним розрядом – неонова лампа, стабілітрони, тиратрони тліючого розряду

В іонних (газорозрядних) приладах, які посідають більш скромне місце в електронній техніці, ніж електровакуумні й особливо напівпровідникові прилади, однак застосовуються досить широко, електричний струм утворюється не у вакуумі, а в газовому середовищі, в умовах зіткнення електронів з молекулами газу.

Молекули газу під дією ряду причин (електричного або магнітного полів, теплового, світлового випромінювань тощо) розпадаються на іони й електрони, і газ стає провідним. Однак у природних умовах кількість електронів і іонів в одиниці об'єму газу порівняно невелика, оскільки іонізуюча дія зовнішніх факторів досить слабка, одночасно з процесом розпадання молекул (іонізацією) практично відбувається рівноцінний процес — рекомбінація, тобто процес сполучення електронів і іонів у нейтральні молекули (деіонізація). Тому електропровідність газу в природних умовах настільки мала, що його можна вважати ізолятором. Якщо газ перебуває в розрідженому стані, то можливості для деіонізації зменшуються, оскільки тепер в одиниці об'єму міститься менше молекул, середні відстані між електронами й іонами збільшуються, отже, ймовірність їх зіткнення (а значить, і рекомбінація) різко зменшується. Крім того, кількість електронів і іонів у газі значно збільшується внаслідок штучної зовнішньої дії (наприклад, електричного поля). Обидва ці фактори, що зумовлюють електричну провідність газу, використовуються в іонних приладах.

Конструктивно іонні прилади виготовляють у вигляді герметичних балонів (звичайно скляних), усередині яких розміщені електроди. Балони заповнюють розрідженим інертним газом або парами ртуті.

Коли до електродів іонного приладу прикласти напругу, то під дією електричного поля, що утворилося, позитивно заряджені іони починають рухатися до катода, а електрони до анода. Саме так в іонних приладах утворюється електричний струм.

Сукупність процесів, пов'язаних з проходженням струму через газ, називають електричним розрядом.

Коли напруга, прикладена до електродів іонного приладу, порівняно мала, то струм, що проходить через прилад, незначний і підлягає закону Ома. Цей струм зумовлений наявністю в газі електронів і іонів за рахунок природної іонізації (під впливом зовнішніх факторів). Такий розряд називають несамостійним, оскільки він не утворюється і не розвивається, коли немає зовнішніх іонізуючих факторів. У цьому режимі значна частина електронів і іонів рекомбінує.

Loading...

 
 

Цікаве