WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Методи автоматичного контролю та оптимізації технологічних комплексів мокрої магнітної сепарації залізних руд - Курсова робота

Методи автоматичного контролю та оптимізації технологічних комплексів мокрої магнітної сепарації залізних руд - Курсова робота

, (1)

де , - довірчі інтервали.

Рис.1. Експериментальні статичні характеристики двох паралельно працюючих магнітних сепараторів, де: 1, 2 - магнітні сепаратори; 3, 4 - електродвигуни; 5, 6 - вимірювальні перетворювачі активної потужності; P1, P2 - вихідні токові сигнали вимірювальних перетворювачів активної потужності; B - витрата води; g - густина зливу класифікатора.

Рис.2. Експериментальні статичні характеристики комплексу магнітної сепарації з перечищенням промпродукту, де: 1, 2 - магнітні сепаратори; 3, 4 - електродвигуни; 5, 6 - вимірювальні перетворювачі активної потужності; P1, P2 - вихідні токові сигнали вимірювальних перетворювачів активної потужності; B - витрата води; g - густина зливу класифікатора.

Рівняння статичних характеристик магнітних сепараторів, що працюють у комплексі з перечищенням промпродукту мають вигляд:

, (2)

де , - довірчі інтервали.

Аналіз отриманих статичних характеристик показав можливість побудови диференціальних безпошукових систем автоматичної оптимізації технологічних комплексів магнітної сепарації.

Третій розділ присвячений розробці й дослідженню методів автоматичного контролю технологічних комплексів мокрої магнітної сепарації.

Для автоматичного контролю ефективності усереднення руди розроблений метод, заснований на сумісному спектральному аналізі центрованих випадкових процесів зміни у часі сигналів активної потужності електродвигунів млина, спіральних класифікаторів і магнітних сепараторів першої стадії збагачення та масової частини заліза у руді й питомої роботи подрібнення, що характеризує її твердість та крупність або текстурні властивості руди. Експериментально одержані спектральні щільності наведені на рис.3,4.

Рис. 3. Спектральні щільності інформаційних параметрів, де: - спектральна щільність центрованого випадкового процесу зміни у часі масової частини заліза у первинній руді; - спектральна щільність центрованого випадкового процесу зміни у часі масової частини заліза в промпродукті сепаратора, - спектральна щільність сигналів активної потужності приводного електродвигуна магнітного сепаратора; , - граничні частоти; , - резонансні частоти.

Рис. 4. Спектральні щільності інформаційних параметрів, де: - спектральна щільність центрованого випадкового процесу зміни у часі питомої роботи подрібнення руди; , - відповідно спектральна щільність сигналів активної потужності приводних електродвигунів млина і класифікатора; - резонансна частота; , - граничні частоти.

Спектральні щільності центрованих випадкових процесів коливань масової частини заліза у первинній руді та у промпродукті визначаються і текстурними, і структурними властивостями руди. З аналізу рис.3 випливає, що спектральна щільність сигналу активної потужності двигуна сепаратора збігається за резонансними частотами зі спектральними щільностями і . Точність збігу за частотами і менша ніж 5%, тому непрямою характеристикою коливань текстурно-структурних властивостей руди є спектральна щільність сигналу активної потужності, споживаної приводним електродвигуном магнітного сепаратора . Ця спектральна щільність у загальному випадку має множину характерних частот А:

(3)

де - характерні частоти, відповідні до максимумів спектральної щільності.

Спектральна щільність центрованого випадкового процесу коливань питомої роботи подрібнення первинної руди визначає її текстурні властивості. З аналізу рис.4 випливає, що спектральна щільність сигналу активної потужності двигуна класифікатора збігається за резонансною частотою зі спектральною щільністю . Точність збігу за частотою менша ніж 4%.

Тому непрямою характеристикою коливань текстурних властивостей руди є спектральна щільність сигналу активної потужності, споживаної приводним електродвигуном спірального класифікатора . Ця спектральна щільність у загальному випадку має множину характерних частот В:

. (4)

Різниця двох множин дає множину характерних частот C коливань структурних властивостей збагаченої руди:

(5)

де i = 1,2. З урахуванням виразів (3) - (5) множина характерних частот коливань структурних властивостей руди:

(6)

З аналізу графіків рис.3, 4, а також з виразів (3) - (6) випливає, що спектральна щільність коливань сигналу активної потужності, споживаної приводними двигунами млина і спірального класифікатора, визначається коливаннями питомої роботи подрібнення руди. Спектральна щільність коливань сигналу активної потужності приводного двигуна магнітного сепаратора визначається коливаннями питомої роботи подрібнення руди і коливаннями вмісту заліза у первинній руді. З теорії подрібнення відомо, що питома робота подрібнення руди є непрямою характеристикою крупності і твердості руди.

Отже, оцінка основної частоти коливань текстурних властивостей руди виконується за резонансною частотою спектральної щільності коливань сигналу активної потужності приводного двигуна класифікатора або млина.

Оцінка основних частот коливань текстурно-структурних властивостей руди виконується за резонансною частотою спектральної щільності коливань сигналу активної потужності приводного двигуна магнітного сепаратора.

Оцінка основної частоти коливань структурних властивостей руди виконується за резонансною частотою, яка присутня в спектральній щільності сигналу активної потужності приводного двигуна магнітного сепаратора і відсутня у спектральній щільності сигналу активної потужності двигуна спірального класифікатора або млина.

Запропонована методика використовується для ідентифікації частот збурюючих дій при проектуванні й наладці систем автоматичного регулювання процесів подрібнення, класифікації та магнітної сепарації, а також для контролю ефективності усереднення руди за текстурними і структурними властивостями. У цьому випадку оцінку дисперсії коливань текстурних властивостей руди виконують, використовуючи вираз:

(7)

де , - відповідно нижня та верхня границя частотного діапазону коливань.

Оцінка дисперсії коливань текстурно-структурних властивостей руди здійснюється за виразом:

(8)

Припустімо, наприклад, що усереднення руди відбувається за текстурно-структурними властивостями. Для цього використовується формула (8). Якщо при спостереженні протягом періодів і за формулою (8) були розраховані значення дисперсії відповідно і причому то це означає, що ефективність усереднення руди за період була вищою, ніж за період .

Науково обґрунтований метод технічного контролю розгерметизації барабана сепаратора, при якому активна потужність, споживана електродвигуном сепаратора, перевищує технологічно припустимий рівень. Запропонований алгоритм виявлення розгерметизації барабана сепаратора:

(9)

де - напруга сигналізації; - верхнє припустиме значення сигналу активної потужності.

Для контролю затирання барабана сепаратора через потрапляння побічних предметів або через відхилення від осі запропонований метод технічного контролю за появою в спектральній щільності центрованого випадкового процесу зміни у часі сигналу активної потужності максимуму на частоті обертання барабана сепаратора . Система контролю містить смуговий фільтр оборотної частоти . Поява сигналу активної потужності електродвигуна сепаратора на частоті свідчить про технічну несправність магнітного сепаратора, пов'язану із затиранням барабана. Типові спектральні щільності технічно справного магнітного сепаратора наведені на рис.5, а несправного - на Рис.6.

Рис. 5. Типова спектральна щільність активної потужності технічно справного магнітного сепаратора, де: fП - частота біжучого електромагнітного поля.

Рис.6. Типова спектральна щільність активної потужності технічно несправного магнітного сепаратора, де: - частота обертання барабана сепаратора; fП - частота біжучого електромагнітного поля.

Розроблений метод автоматичного управління кількістю паралельно працюючих магнітних сепараторів, що утворюють фронт магнітної сепарації з урахуванням параметрів законів розподілу сигналів активної потужності.

Обґрунтовані оптимальні границі переключення кількості сепараторів, виходячи з мінімізації ризику прийняття рішення відповідно до величини споживаної ними активної потужності. Наприклад, якщо максимальна кількість працюючих сепараторів дорівнює трьом при постійно включеному одному сепараторі, оптимальна границя переключення

, (10)

де d - середньоквадратичне відхилення сигналу активної потужності; і - математичні очікування сигналів активної потужності відповідно при двох і трьох включених сепараторах; і - відповідно ймовірності роботи двох і трьох працюючих сепараторів; і - відповідно вартість втрат від помилкового включення та відключення сепаратора.

Кількість паралельно працюючих у стадії збагачення магнітних сепараторів автоматично змінюють пропорційно до активної потужності, споживаної електродвигунами сепараторів з мережі, обумовленої продуктивністю сепараторів за магнітним продуктом.

Розроблений метод технологічного контролю комплексу магнітної сепарації з перечищенням промпродукту. Функціональна схема системи технологічного контролю, а також її статичні характеристики, наведені на рис.7,8.

Loading...

 
 

Цікаве