WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Дослідження математичної моделі WiMax та розрахунок покриття на її основі - Курсова робота

Дослідження математичної моделі WiMax та розрахунок покриття на її основі - Курсова робота

Мал. 3.1. Діаграма сузір'я модуляції 16QAM.

Вектор сигналу 16 QAM має 16 можливих позиції в просторі координат амплітуди і фази, що кодує 16 значень символу від 0000 до 1111. Вектор сигналу 64 QAM має 64 позиції, що кодує 64 значення символу. Модуляції BPSK і QPSK кодують 2 і 4 значення символу за допомогою, відповідно, два і чотирьох можливих значень фази. Амплітуда сигналу в модуляціях BPSK і QPSK не міняється. Тим самим ці два типи модуляції можна розглядати як окремий випадок амплитудно-фазової модуляції QAM. Таким чином, модуляція 64qam є найшвидкіснішою, оскільки дозволяє передавати 64 можливих значення в одному символі даних, що забезпечує вищу символьну швидкість і, в результаті, вищу швидкість передачі даних в порівнянні з нижчими модуляціями.

На мал. 3.2 представлені зони обслуговування різними модуляціями фіксованих абонентів мережі WIMAX в діапазоні частот 5 Ггц. Так обслуговування абонентів, оснащених зовнішньою направленою антеною на найшвидкіснішій модуляції 64QAM3/4, що підтримує максимальну символьну швидкість і відповідну швидкість передачі даних, забезпечується на дальності до 25 км., 16QAM1/2 - на дальності до 40-45 км. Тим самим, дальність обслуговування на швидкісних модуляціях 64 QAM і 16 QAM в мережі WIMAX в чотири і більше разів більше відповідних дальностей обслуговування на аналогічних модуляціях систем preWiMax.

Здатність підтримки тієї або іншої модуляції залежить від багатьох параметрів зв'язку, і насамперед, від енергетичних параметрів системи.

Мал. 3.2. Зони обслуговування мережі WIMAX.

Як видно з діаграми сузір'я модуляції QAM, чим вище тип модуляції, тим менше по амплітуді і фазі відрізняються вектори сусідніх значень символу, що передається. Тим самим, для безпомилкового прийому символу (прийому з деяким допустимим рівнем помилок) потрібний потужніший сигнал, а точніше, вище відношення потужності сигналу до шуму.

Кожен тип модуляції для передачі символу з рівнем помилок, що не перевищує певного максимального значення, вимагає певного мінімального значення відношення рівня сигналу до шуму Signal/noise Ratio (SNR або S/n). Окрім відношення SNR часто використовується практично ідентичне поняття Сnr Carrier/noise Ratio або C/n.

Кожен тип модуляції характеризується необхідним рівнем відношення сигналу до шуму SNR, необхідного для передачі біт інформації з помилками Bit Error Rate (BER) не вище за деякий допустимий рівень. На мал. 3.3 представлені залежності відношення SNR від бітових помилок для кожного типу модуляції.

Мал. 3.3. Залежність відношення сигнал/шум від бітової помилки.

Стандарт IEEE 802.16-2004 визначає для підтримки модуляції 64 QAM на рівні помилок не вище Ber=10e-6 з урахуванням корекції помилок Fec=3/4 значення відношення сигнал/шум для кожної несучої OFDM сигналу SNR рівне 24.4 db. Пізніший стандарт IEEE 802.16e-2005 задає для фіксованих і мобільних мереж WIMAX жорсткіше значення Snr=21 db для 64QAM3/4 з Ber=10e-6.

3.2 Залежність величина радіусу комірки від чутливості приймача.

Розрахунок радіусу комірки для різних видів модуляції є дещо ідеалізований. Для досягнення таких результатів при практичній побудові необхідно оцінити додаткові енергетичні характеристики системи, такі як чутливість приймача та коефіцієнт системного підсилення. Так, для отримання необхідного рівня SNR(а значить і відповідного BER) потужність сигналу на вході приймача системи має бути вище відповідного порогового рівня чутливості.

Для прикладу, розглянемо модуляцію 64QAM.

Пороговий рівень чутливості Rx приймача для систем OFDM для модуляції 64QAM3/4 визначається як:

Rx 64QAM3/4 = No + Snr64qam3/4 + 10 Log (Bwef) + Nf + Implementation Loss, dbw; [3]

де Snr64qam 3/4 - необхідний рівень відношення SNR для модуляції 64QAM3/4=21 db;

No = 10 log (kto) = -144 db (W/mhz) - Receiver Noise Floor спектральна густина потужності теплового шуму приймача, kto - закон рівномірного розподілу;

Nf - значення власного шуму приймача (noise figure) рівне - 8 db (IEEE 802.16e-2005).

Implementation loss рівне 5 db. Ця величина відображає так звані втрати реалізації, що враховують неідеальність приймача, фазовий шум і ін.

Bwef - ефективна ширина спектру групового сигналу OFDM. Ця величина пропорційна кількості піднесучих в спектрі групового сигналу. За рахунок наявності захисного інтервалу між під несучими ефективна ширина спектру OFDM сигналу декілька менше смуги пропускання приймача (ширина каналу). Для каналу шириною 10 Мгц без subchannelisation (використовуються всі піднесучі) Bwef = 9.15 Мгц, 10 Log (Bwef) = 9.6 Мгц.

Отже

Rx 64QAM3/4 = -101 + Snr64qam3/4 +10 Log (Bwef), dbm; [4]

Тим самим, необхідний пороговий рівень чутливості системи WIMAX стандарту IEEE 802.16e-2005 при implementation loss 5 db з шириною каналу 10 Мгц складає 70.4 dbm. За стандартом IEEE 802.16-2004 ця величина раніше складала 68 dbm. Відзначимо, що стандарт IEEE 802.16e-2005 описує вимоги не тільки до мобільних OFDMA мереж WIMAX, а також містить нові жорсткіші вимоги (так званий Rev Cor1) до фіксованих OFDM мереж WIMAX.

Для підтримки деякої модуляції рівень OFDM сигналу на вході приймача Receive Strength Signal Level (RSSL) в смузі пропускання каналу BW повинен на величину SNR відношення сигнал/шум перевищувати рівень теплового шуму з урахуванням внутрішнього шуму приймача і втрат реалізації.

Таким чином, для підтримки модуляції 64QAM3/4 рівень OFDM сигналу на вході приймача Receive Strength Signal Level (RSSL) має бути для систем WIMAX згідно стандарту IEEE 802.16e-2005 не нижче за рівень чутливості 70.4 db (Snr=21 db) в смузі ширини каналу Bw=10 Мгц. Реальні системи WIMAX зазвичай мають вищий в порівнянні з вимогами стандарту рівень чутливості, оскільки значення втрат реалізації implementation loss 5 db в стандарті дещо завищене. Наприклад, чутливість системи Airspan MICROMAX SOC 5 Ghz (стандарт IEEE 802.16e-2005) в каналі шириною 10 Мгц для 64QAM3/4 складає -77 dbm (при Snr=21 dbm), що відповідає практично ідеальному приймачу (Implementation loss близько до нуля) з низьким рівнем власних шумів noise figure менше 6 db. Чутливість системи Axxcelera AB-MAX 5 Ghz (стандарт IEEE 802.16-2004) в каналі шириною 10 Мгц для 64QAM3/4 складає 72.7 dbm (при Snr=21 dbm). Чутливість системи UNIDATA Maxbridge CPE 5 Ghz (стандарт IEEE 802.16e-2005) складає 70.5 dbm (при Snr=20 dbm і для значно нижчого рівня помилок Ber=10-11, що відповідає чутливості для Ber=10-6 порядку -74 dbm).

В принципі, система може підтримувати модуляцію 64QAM3/4 і при значно (на декілька db) нижчих значеннях сигналу, але при цьому рівень бітової помилки буде гірше значення Ber=10е-6. Відповідно, розрахувавши чутливість приймача, можна оцінити певний коефіцієнт погіршення чи покращення якості в каналі зв'язку, а значить – провести зміни розміру комірки.

3.3 Залежність величина радіусу комірки від системного підсилення

Кожна система характеризується параметром, відомим як системне підсилення System Gain, що визначає максимальний радіус комірки. Системне посилення визначається як:

System Gain = Tx - Rx; [5]

де Tx - вихідна потужність передавача системи; Rx - чутливість приймача системи.

Тим самим, системи WIMAX мають на 5-10 db вище системне посилення (при рівності значень Tx вихідної потужності передавача).

Для розрахунку радіусу комірки використовують рівняння бюджету каналу зв'язку Link Budget. Як відомо, збільшення Link Budget на 6 і 12 db збільшує дальність зв'язку, відповідно, LOS і NLOS в два рази. Дане рівняння зв'язує рівень потужності на вході приймача RSSLRX і вихідну потужності передавача Tx, що знаходяться один від одного на відстані D:

RSSLRX = TX + GTX + GRX - LRX -ltx - LD, dbm; [6]

де TX - вихідна потужність передавача, dbm;

GTX - коефіцієнт підсилення антени передавача, dbi;

GRX - коефіцієнт підсилення антени приймача, dbi;

LRX, LTX - СВЧ втрати потужності сигналу, відповідно, в приймачі і передавачі, в кабелі, роз'ємах і др.;

LD - втрати в db на шляху розповсюдження радіохвиль на дальність D км.

Наприклад, в умовах LOS втрати потужності сигналу у вільному просторі розраховуються як

LD = 20 log (4рd / л), db; [7]

де л - довжина хвилі.

В умовах NLOS втрати розраховуються по складніших формулах.

Оскільки система підтримує зв'язок на модуляції 64QAM3/4, якщо рівень сигналу на вході приймача RSSLRX буде вищий за рівень чутливості RX, то згідно виразу Link Budget (7) для цього необхідно, щоб

RSSLRX - FM = TX + GTX + GRX - LRX - LTX - LD - FM >= RX, dbm; [8]

LD =< TX - RX + GTX + GRX - LRX - LTX - FM; [9]

де FM - запас по завмираннях fade margin.

У реальних системах унаслідок завмирання сигналу із-за багатопроменевого розповсюдження радіохвиль зазвичай потрібно, щоб рівень сигналу RSSL перевищував рівень чутливості сигналу на деяку величину – запас по завмираннях Fade Margin (FM). У системах WIMAX для підтримки модуляції 64QAM3/4 сигналу OFDM достатньо запасу fade margin рівне 1 db.

Таким чином, для роботи на дальності D км., втрати розповсюдження радіохвиль мають бути менше величини:

LD =< System Gain + Підсилення антен - СВЧ втрати - Fade Margin

Таким чином, чим вище System Gain системне посилення і менший необхідний запас по завмираннях Fade Margin, тим більший бюджет лінка має система і відповідно, тим більша дальність зв'язку.

Як було відмічено, системи WIMAX мають на 5-10 db вище System Gain в порівнянні з системами Prewimax. Крім того, OFDM сигнал prewimax системи має значно менше число піднесучих. Також захисний інтервал між піднесучими не розрахований на обробку багатопроменевого розповсюдження сигналів на високих дальностях зв'язку (відмінних від офісних умов). Це приводить до низької ефективності обробки завмирань системами prewimax і, як наслідок, необхідності великих запасів по завмираннях fade margin, рівними 6 db в умовах LOS (за наявності зони Френеля) і 12 db за наявності оптичної видимості (near LOS, повна або часткова відсутність зони Френеля).

Loading...

 
 

Цікаве