WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Технології WDM - Курсова робота

Технології WDM - Курсова робота

Оптичні підсилювачі обов'язково використовується після WDM мультиплексора і перед WDM демультиплексором для компенсації енергетичних втрат.

Параметри оптичних підсилювачів наступні:

Коефіцієнт підсилення каналу

Рівномірність коефіцієнта підсилення

Поляризаційна залежність коефіцієнта підсилення

Профіль підсилення

Підсилене спонтанне випромінювання

Шум-фактор

Типи оптичних підсилювачів

Типи підсилювачів

Сфера застосування

1

Підсилювач на волокні, що використовує розсіювання Мандельштама-Брілюена

Підсилення одного каналу (однієї довжини хвилі)

2

Підсилювач на волокні, що використовує Раманівське розсіювання

Підсилення кількох каналів одночасно

3

Параметричні оптичні підсилювачі

Підсилення кількох каналів одночасно

4

Напівпровідникові лазерні підсилювачі

Підсилення великої кількості каналів в широкій області діапазону хвиль одночасно

5

Підсилювачі на волокні з домішками

Підсилення великої кількості каналів в широкій області діапазону хвиль одночасно

Підсилювач на волокні, що використовує розсіювання Мандельштама-Брілюена.

Стимульоване розсіювання Мандельштама-Брілюена - нелінійне явище, за якого енергія оптичної хвилі (на частоті f1) переходить у енергію нової хвилі (на частоті f2) Якщо накачування відбувається на частоті f1, то такий підсилювач здатен підсилювати корисний сигнал на частоті f2.

Явище розсіювання Мандельштама-Брілюена виникає за потужності накачування порядку 10 мВт. Рівень стимульованого розсіювання Мандельштама-Брілюена є вищим за більшої ширини лінії лазера накачування та за більшої ефективної площі волоконного світловоду. Це розсіювання не виникає за довжин волокна, менших від 10 км.

Підсилювач на волокні, що використовує комбінаційне розсіювання Рамана.

Такі підсилювачі використовують нелінійне явище, пов'язане із стимульованим Раманівським розсіюванням. Раманівським, розсіювання назване на честь індійського фізика С.В. Рамана, котрий відкрив цей ефект у 1928 р. Принцип дії підсилювача полягає в тому, що фотон з частотою f1 при розсіюванні на молекулі речовини переходить на частоту f2. Якщо на частоті f2 передавати корисний сигнал, а потужність накачування на частоті f1 зробити достатньо високою, то Раманівське розсіювання стає стимульованим, а фотони - когерентними і волокно стає розподіленим підсилювачем, з коефіцієнтом підсилення, пропорційним накачуванню.

Таким чином, принцип дії Раманівських підсилювачів тотожній підсилювачам з розсіюванням Мандельштама-Брілюена, однак зсув між частотою корисного сигналу, що підсилюється, та частотою хвилі накачування є більшим. Діапазон підсилення також є більшим, що дозволяє підсилення одразу кількох каналів WDM системи. Явище розсіювання Рамана виникає при потужності накачування порядку 1 Вт.

Рманівські оптичні підсилювачі поділяють на:

Співнаправлені (в котрих енергія накачування здійснюється в напрямку розповсюдження корисного сигналу)

Зворотньонаправлені (в котрих енергія накачування здійснюється в напрямку, протилежному напрямку розповсюдження корисного сигналу)

Двонаправлені (в котрих енергія накачування здійснюється в обох напрямках)

Параметричні оптичні підсилювачі

Оптичні підсилювачі, що викокористовують ефект чотирихвильового змішування. Такі підсилювачі потребують великої потужності накачування (порядку ЗО 70 Вт), мають значний коефіцієнт підсилення (до 50 дБ), але їх реалізація потребує значної складності, що стримує їхнє практичне використання.

Напівпровідникові оптичні підсилювачі

Ніваппровідниковий оптичний підсилювач - підсилювач, активною речовиною якого є напівпровідниковий матеріал, а система накачування - електрична.

Напівпровідникові оптичні підсилювачі використовують збуджену емісію, що виникає завдяки взаємодії фотонів випромінювання накачування з електронами в зоні провідності у збуджуваному рівні.

Підсилювачі на волокні з домішками.

Оптичні підсилювачі, що використовують як активний матеріал рідкоземельні елентієм (або лантаніди - елементи з 57 по 71 в періодичній таблиці Менделєєва). Як правило, це Неодим (Nd) та Празеодим (Рr) для підсилення у вікні 1300 нм, Ербій (Er) та застосований з ним Ітербій (Yb) для підсилення у вікні 1550 нм.

З огляду на те, що у сучасних WDM системах використовуються С та L діапазони, найчастіше застосовують підсилювачі, виготовлені на волокні, легованому ербієм, EDFA.

В залежності від застосування оптичні підсилювачі класифікують на:

Попередній підсилювач (ПоП) (має низький рівень шуму, його вмикають перед оптичним приймачем для покращення його чутливості)

Лінійний підсилювач (ЛП) (має низький рівень шуму, його вмикають на виході ділянки оптичного волокна для компенсування втрат, що вносяться волокном)

Підсилювачі потужності (ПП) (використовують для підвищення потужності оптичного сигналу, встановлюють після оптичного передавача)

При застосуванні оптичних підсилювачів важливо визначити число каскадів оптичних підсилювачів, необхідних для кожного оптичного каналу. Число каскадів оптичних підсилювачів, допустиме в оптичному каналі, обмежується сумарним шумом, котрий вносить кожний підсилювач. Кожний підсилювач дещо погіршує відношення сигнал шум (OSNR). З досягненням мінімального відношення OSNR (тобто значення OSNR, нижче котрого на боці приймача будуть з'являтись помилки), стає необхідним оптико-електрично-оптичний вузол регенерації (ОЕО).

Окрім цього, у випадку використання оптичних підсилювачів потужності максимальна допустима потужність на канал не повинна перевищувати +10 дБм для каналу 10 Гбіт/с та +15 дБм для каналу 2,5 Гбіт/с та нижчої швидкості. Перевищення може викликати нелінійні ефекти в оптичному волокні.

2.3.10. Хвильові конвертори

Хвильові конвертори призначені для перетворення однієї довжини хвилі в іншу. Так, якщо інформаційний сигнал у підмережі 1 було представлено каналом на довжині хвилі, котра вже задіяна в іншій підмережі - 2, то хвильовий конвертер може перетворити цей сигнал при переході з підмережі 1 в підмережу 2 на іншу вільну в підмережі 2 довжину хвилі, забезпечивши прозорий зв'язок між пристроями в різних підмережах. У хвильових конверторах використовується ефект чотирихвильового змішування. Важливими параметрами є:

Внесені втрати

Перехресні завади

Втрати на відбиття

2.3.11 Оптичне волокно

Оптичне волокно - фізичне середовище передавання інформації.

Оптичне волокно у вигляді циліндра круглого поперечного перерізу з прозорого для оптичного випромінення діелектричного матеріалу забезпечує розповсюдження світла вздовж волокна за рахунок відбивання світлового променя від неоднорідного середовища серцевина-оболонка. При цьому основна частина енергії оптичного випромінення зосереджується в серцевині. Для захисту від зовнішніх впливів та підвищення механічної міцності волокна його оболонку покривають захисним покриттям.

Оптичні волокна в залежності від профілю показника заломлення в серцевині поділяють на східчасті, градієнтні та волокна зі складним профілем показника заломлення.

Всі оптичні волокна поділяють на дві групи:

Одномодові (SMF, Single-Mode Fiber)

Багатомодові (ММF, Multi-Моdе Fiber)

Одномодові оптичні волокна напрямляють одну моду в робочому диапазоні довжин хвиль.

У волоконно-оптичних системах передачі з WDM використовують одномодові оптичні волокна, котрі є середовищем передавання (відповідно фізичним рівнем оптичної транспортної мережі):

Волокно без зсунутої дисперсії, так зване стандартне волокно (SF, Standard Fiber)

Волокно із зсунутою дисперсією (DSF, Dispersion-shifted Single-mode Fiber)

Волокно із зсунутою довжиною хвилі зрізу

Волокно з ненульовою та зсунутою дисперсією (NZDSF, Non-zero Dispersion-shifted Single-mode Fiber)

Волокно з ненульовою дисперсією для широкосмугового оптичного переносу.

Різні типи волокон є достатньо близькими за значенням величини загасання, але суттєво відрізняються за величиною хроматичної дисперсії.

Основними параметри та характеристики оптичних волокон є:

Погонне загасання у волокні в кабелі

Хроматична дисперсія

Поляризаційна дисперсія моди

Втрати на макровигинах

Діаметр поля моди

Довжина хвилі зрізу одномодового волокна в кабелі

Діаметр оболонки

Неконцентричність серцевини

Некруглість оболонки

Стійкість до розриву

2.4 Реалізація WDM систем

При проектуванні мереж WDM передбачають такі етапи:

Визначення пропускної спроможності окремих оптичних каналів

Вибір типу волокна для оптичного кабелю ВОЛЗ

Вибір типу оптичних підсилювачів та визначення довжини підсилювальних ділянок

Визначення типу топології, архітектури та структури мережі

Loading...

 
 

Цікаве