WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Цифрові вимірювальні прилади - Курсова робота

Цифрові вимірювальні прилади - Курсова робота

ЦИФРОВІ ВИМІРЮВАЛЬНІ ПРИЛАДИ

Загальні відомості про цифрові вимірювальні прилади

Особливості цифрових вимірювальних приладів

Приведене, згідно з ДСТУ 2681, визначення цифрового вимірювального приладу базується на формі подання результату вимірювання, тобто особливість цифрових вимірювальних приладів (ЦВП) полягає в тому, що результат вимірювання відбивається на показувальному пристрої у вигляді числа, як правило, десяткового, або символів. Ця особливість належить до зовнішніх ознак ЦВП, вона не обумовлює їхніх принципів побудови і технічних характеристик, але забезпечує зручність відліку і, головне, усуває суб'єктивні помилки оператора. Проте таке визначення ЦВП не враховує іншу, загальноприйняту особливість наявність автоматичного переходу від аналогової до дискретної форми подання одного або двох сигналів на якомусь етапі їх перетворення в приладі, що виконується аналого-цифровим перетворювачем (АЦП). Аналого-цифрове перетворення є принципово якісною відзнакою ЦВП і помітно впливає на їх технічні, особливо метрологічні характеристики.

Операції аналого-цифрового перетворення

Аналого-цифрове перетворення передбачає виконання трьох операцій: дискретизацію, квантування і цифрове кодування вимірюваної величини або функціонально з нею зв'язаного сигналу вимірювальної інформації (далі просто сигналу). Пояснимо суть цих операцій.

Операція дискретизації зводиться до подання безперервного протягом часу T сигналу x(t) (рис.7.1, а) низкою його миттєвих значень xq = x(tq), , взятих у задані, строго фіксовані моменти часу tq, які називають моментами дискретизації.

Дискретизований сигнал xд(t) у вигляді n миттєвих значень xq сигналу x(t) подано на рис.7.1, б. Тільки за цією скінченною множиною миттєвих значень xq сигналу x(t) визначають результат вимірювання, а останні значення сигналу не враховуються. При дискретизації змінного сигналу x(t) протягом часу T частина інформації про нього втрачається, що призводить до методичної похибки вимірювання; її називають похибкою дискретизації. Очевидно, вона буде тим меншою, чим більше число миттєвих значень сигналу xq бере участь в одержанні результату вимірювання. Інтервал часу між двома суміжними моментами дискретизації і називають інтервалом або кроком дискретизації.

Рис. 1. Часові діаграми операцій АЦП:

а – вихідний сигнал ; б – дискретизований сигнал ;

в – квантований сигнал ; г – кодовий сигнал

Він може бути постійним Dt = const (рівномірна дискретизація) або змінним (нерівномірна дискретизація). У ЦВП звичайно використовують рівномірну дискретизацію як більш просту для апаратурної реалізації, в цьому разі називають також періодом дискретизації.

Квантування полягає в поданні безперервної за значенням (не за часом) величини у вигляді скінченого числа фіксованих рівнів квантування , де , що створюють шкалу квантування (рис.7.1, в).

У ЦВП квантування виконується шляхом порівняння вимірюваної величини з сіткою (шкалою) рівнів квантування , , які в даному процесі задаються рівномірно або нерівномірно з інтервалом квантування

.

Кінцевий результат квантування вимірюваної величини xq подається як число Nq мінімальних (найменших) інтервалів квантування , тобто

,

де називають номінальною ціною одиниці найменшого розряду вихідного коду, або дискретністю чи ціною поділки ЦВП, або інтервалом квантування.

Для наочності шкала квантування на рис.7.1, в взята рівномірною, а значення квантованого сигналу xк(t) (згідно з одним із варіантів квантування, що пояснюються нижче, дискретизовані значення хq замінюються найближчим нижнім рівнем квантування) показані умовним знаком х. Ці значення в ЦВП кодуються частіш за все двійковим або двійково-десятковим кодом. Проте для наочності на рис.7.1, г вони представлені в одиничному коді Nq. Тому числу рівнів квантування Nq, яким приблизно зображено миттєве значення сигналу xq, відповідає така ж кількість імпульсів у його кодовій групі.

Найчастіше в ЦВП аналого-цифрового перетворення зазнає постійна фізична величина X. Перетворення виконується в одній точці (в один момент часу) або в кількох точках (моментах часу) для статистичної обробки результатів вимірювання з метою зменшення випадкової складової похибки вимірювань. У цьому випадку результат одного перетворення

,

деNx - ціле число інтервалів квантування DХк, що відповідає значенню фізичної величини Х.

Аналого-цифрове перетворення сигналів здійснюється в діапазоні від 0 до (уніполярні АЦП) або в діапазоні від до (біполярні АЦП). Надалі для конкретності і деякого спрощення часових діаграм обмежимося уніполярними АЦП, що не впливає на спільність викладених положень. У разі уніполярного АЦП кожне значення вимірюваної величини X у діапазоні від 0 до можна розглядати як елемент нескінченної множини значень вхідного сигналу, яка за допомогою АЦП відбивається скінченною множиною значень його вихідного сигналу.

Загальна кількість рівнів квантування, рівномірно розміщених у робочому діапазоні ЦВП, визначається числом потрібних значень результату вимірювання, що може бути відображено на цифровому відліковому пристрої ЦВП, і визначає розрядність або ємність останнього. Так, у ЦВП з чотирирозрядним десятковим відліковим пристроєм (максимальне показання 9999) нескінченна множина значень безперервної вимірюваної величини, які знаходяться в діапазоні його вимірювань, зводиться до 10000 (з урахуванням нульового показу) можливих значень результату вимірювань. Це означає, що в даному ЦВП шкала квантування має 10000 рівномірно розташованих рівнів, одному з яких може бути надане будь-яке значення вимірюваної величини X. При квантуванні довільне миттєве значення вимірюваної величини xq, що знаходиться між двома рівнями квантування, наприклад між і , автоматично округлюється, тобто замінюється одним з цих рівнів: або верхнім , або нижнім (рис.7.1, в), або найближчим - верхнім чи нижнім. Округлення результату вимірювання при квантуванні призводить до методичної похибки, так званої похибки квантування або дискретності. Очевидно, похибка квантування відсутня тільки в одному ідеальному випадку, коли значення xq точно дорівнює одному з рівнів квантування .

Похибка квантування є випадковою величиною, яка підпорядковується рівномірному закону розподілу. Розташування кривих щільності розподілу похибки квантування та її числові характеристики (максимальне значення, математичне сподівання і середнє квадратичне відхилення) визначаються вибраним варіантом квантування (округлення). На рис.7.2, а, б, в приведені криві щільності розподілу похибок квантування для варіантів округлення миттєвого значення (рис.7.1, в) відповідно до верхнього, нижнього і найближчого рівнів квантування, для яких визначається рівностями

або/і

Рис. 2. Графіки щільності розподілу похибки квантування р(Dк)

Числові характеристики похибки квантування для цих варіантів зведені в табл.7.1.

Таблиця 1.

Варіант

квантування

(округлення)

Характеристики похибки квантування

Максимальне

значення

Математичне

сподівання

Середнє квадратичне

відхилення

До верхнього

рівня квантування

До нижнього

рівня квантування

До найближчого

рівня квантування

0

З приведених у табл. 1 оцінок похибки квантування виходить, що відносно точності має перевагу округлення результату вимірювання до найближчого рівня, оскільки в цьому випадку максимальне значення похибки квантування зменшується в два рази і її математичне сподівання дорівнює нулю, тобто немає систематичної складової похибки квантування. Водночас два інших варіанти округлення обумовлюють більш просту апаратурну реалізацію ЦВП і тому знаходять переважне застосування.

Loading...

 
 

Цікаве