WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Методи нормування складових інструментальної похибки вимірювань - Курсова робота

Методи нормування складових інструментальної похибки вимірювань - Курсова робота

У вимірювальних засобах, призначених для вимірювання і перетворення на постійному струмі і в низькочастотному діапазоні вхідних сигналів, вхідний і вихідний (для перетворювачів) опори розглядаються і нормуються як активні. У ЗВТ високочастотного діапазону вхідні і вихідні опори є комплексними і повинні нормуватися як повні. В існуючій НТД вхідний і вихідний повні опори для ЗВТ усіх типів і обох моделей похибок нормуються однаково - заданням номінального значення опорів і границь їх допустимих значень або границь їх допустимих змін.

Проте більш часто параметри вхідного повного опору ЗВТ нормуються окремо. Оскільки реактивна складова вхідного повного опору ЗВТ має, як правило, ємнісний характер, то такий опір представляють у вигляді паралельного (іноді послідовного) з'єднання резистора і конденсатора.

Значно складніше нормувати похибки від взаємодії ЗВТ неелектричних величин з ОВ. У цій галузі вимірювань явища обміну енергією між ЗВТ і ОВ вивчені недостатньо. Але для багатьох ЗВТ неелектричних величин проблема може бути зведена до вже вирішеної, використовуючи теорію електромеханічних аналогій і розрахунку еквівалентних схем перетворювачів неелектричних величин.

Нормування неінформативних параметрів вихідних сигналів засобів вимірювальної техніки

Крім указаних вище метрологічних характеристик, що визначають результат і похибку вимірювань, нормуються неінформативні параметри вихідного сигналу ЗВТ.

Неінформативні параметри вихідних сигналів не належать до метрологічних характеристик ЗВТ. Проте вони визначають можливість нормальної роботи ЗВТ й інших пристроїв, які приєднуються до виходу даного ЗВТ. Наприклад, вихідним сигналом перетворювача напруга-частота або генератора імпульсів є послідовність імпульсів, а її інформативним параметром - частота, вимірювана частотоміром. У той самий час похибка частотоміра залежить від амплітуди, тривалості і форми імпульсів, які належать до неінформативних параметрів. Отже, неінформативні параметри повинні задовольняти певні вимоги, тобто підлягають нормуванню. Це нормування здійснюється двома методами: встановленням або номінальних характеристик (наприклад, значень імпедансів) зі вказанням границь допустимих відхилень від них, або граничних значень характеристик (імпедансів), які визначають область їх допустимих значень. Найбільш розповсюдженим з них є задання границь допустимих значень тієї чи іншої характеристики. Ці границі визначають інтервал, в якому значення характеристики кожного екземпляра ЗВТ конкретного типу повинно знаходитися з імовірністю, близькою до одиниці.

Укажемо також, що всі НМХ ЗВТ можуть представлятися у формі іменованого або неіменованого числа, формули або графіка. При цьому задання будь-якої характеристики у вигляді графіка обов'язково треба супроводжувати одночасним поданням її у вигляді формули або таблиці. Допускається застосування й інших форм подання НМХ за умови, що ці формули дозволяють оцінювати похибки ЗВТ даного типу, а також здійснювати контроль відповідності цих засобів установленим вимогам. У такому випадку форма подання НМХ конкретизується в НТД на даний тип або вид ЗВТ.

Класи точності засобів вимірювальної техніки

Більшість ЗВТ, які знаходяться на теперішній час в експлуатації, мають переважно статичну похибку, тобто динамічна похибка в них не враховується. Нормування статичної похибки цих ЗВТ здійснюється, як правило, встановленням класу точності.

Класом точності називається узагальнена кількісна характеристика ЗВТ, яка визначається гарантованими границями допустимих основної і додаткових похибок, а також іншими характеристиками ЗВТ, що впливають на похибку (точність) вимірювань і значення яких установлюються стандартами на окремі види ЗВТ.

Дійсні значення основної повної похибки окремих екземплярів ЗВТ однакового типу можуть відрізнятися одне від одного як систематичними, так і випадковими складовими, але в цілому для даного типу ЗВТ вони не перевищують границі допустимої основної похибки. Таким чином, установленням і заданням класу точності нормується основна статична похибка ЗВТ, а всі додаткові похибки й інші метрологічні характеристики, що впливають на похибку ЗВТ, указуються окремо.

Відповідність реального значення основної похибки ЗВТ приписаному йому класу точності перевіряється при періодичних повірках. Якщо воно залишається менше від нормованого, то ЗВТ продовжує експлуатуватися, якщо ж реальне значення основної похибки ЗВТ більше від нормованого, то ЗВТ підлягає ремонту та регулюванню.

Основна похибка ЗВТ нормується чотирма різними способами, вибір яких обумовлений співвідношенням адитивної і мультиплікативної складових похибки ЗВТ даного типу.

1. Для ЗВТ, абсолютна похибка яких визначається адитивною складовою і її границі можна вважати практично незмінними для будь-яких значень вимірюваної величини, тобто мультиплікативною складовою похибки можна знехтувати, іноді нормуються границі допустимої абсолютної основної похибки

,

де a - постійна додатна величина, виражена в одиницях вимірюваної величини.

Проте нормування допустимої абсолютної основної похибки ЗВТ використовується рідко, бо для засобів з багатьма межами вимірювань вона різна в кожному піддіапазоні, що створює певні незручності і для вказання всіх границь похибок (треба було б перелічити значення похибок для всіх піддіапазонів), і для практичного застосування. Границі допустимих абсолютних похибок задають для ЗВТ тільки тих фізичних величин, похибки вимірювань яких прийнято виражати в одиницях вимірюваної величини або в поділках шкали, наприклад, для засобів вимірювань довжини, маси, фазового зсуву.

Для більшості ЗВТ з переважною адитивною похибкою нормують границі допустимої основної зведеної похибки ЗВТ, які, згідно з формулою (3.2), визначають за рівністю

, (3.8)

деp - стала додатна величина, виражена у відсотках. Її числове значення вибирається з ряду: , де l = 1; 0; -1; -2 і т.д. Значення, які вказані в дужках, не рекомендуються при створенні нових ЗВТ. Наведений ряд чисел установлений відповідно до правила округлення значень похибок вимірювань (див. 2.11). При тому самому показнику степеня l допускається встановлювати не більш ніж п'ять різних границь допустимої основної похибки для ЗВТ конкретного виду.

Слід пам'ятати, що і при такій формі нормування класу точності ЗВТ характеристикою точності вимірювань залишається відносна похибка. Границі допустимої відносної похибки вимірювань у функції вимірюваної величини визначаються за формулою, одержаною з виразу (3.8) з урахуванням рівності (1.2):

. (3.9)

З формули (3.9) виходить, що зменшення розміру вимірюваної величини призводить до збільшення допустимої відносної похибки вимірювань даним ЗВТ. Зокрема, при допустима відносна похибка дорівнює класу точності ЗВТ лише на останній (кінцевій) позначці діапазону вимірювань . При зменшенні допустима відносна похибка вимірювань зростає і при , тому при виборі ЗВТ для проведення вимірювань необхідно враховувати не тільки їх класи точності, а й співвідношення . З цієї точки зору рекомендується межу вимірювань вимірювального приладу вибирати такою, щоб його покази знаходились у другій половині і навіть ближче до верхньої межі вибраного діапазону вимірювань.

Зважаючи на залежність відносної похибки вимірювань від значення Х, для ряду ЗВТ обмежують діапазон вимірювань такими значеннями вимірюваної величини Х, при яких допустима відносна похибка вимірювань не перевищує деякого, заздалегідь заданого значення, яке дорівнює, наприклад, 4, 10 або 20%. Поза діапазоном вимірювань, особливо в початковій частині діапазону показів для ЗВТ, в яких він починається з нуля, вимірювання не допустимі, оскільки тут адитивна похибка може бути порівняна з вимірюваним значенням і навіть перевищувати його.

2. Для ЗВТ, в абсолютній похибці яких переважає мультиплікативна складова, границю допустимої основної похибки виражають у відносній формі, через те, що у цьому випадку вона виявляється практично постійною величиною, не залежною від вимірюваної величини . Границі допустимої відносної основної похибки ЗВТ установлюються за формулою:

, (3.10)

де - границя допустимої абсолютної мультиплікативної похибки ЗВТ;

b - додатне безрозмірне число;

- постійна додатна величина, виражена у відсотках; вона вибирається з того самого ряду, що й величина p.

Таким способом нормуються похибки масштабних перетворювачів (подільників напруги, шунтів, вимірювальних трансформаторів струму і напруги та ін). І якщо б співвідношення (3.10) залишалось справедливим для всього діапазону можливих значень вимірюваної величини - від 0 до , то такі вимірювальні перетворювачі були б найбільш досконалими, тому що вони мали б широкий робочий діапазон, зокрема, забезпечували б з тією самою похибкою вимірювання необмежено малого значення Х. Проте реально таких перетворювачів не існує, оскільки поки що неможливо створити перетворювачі, в яких повністю вилучена адитивна похибка в широкому діапазоні значень вимірюваної величини. Тому для реальних ЗВТ завжди вказується діапазон вимірювань ЗВТ, в якому оцінка (3.10) справедлива. Поза цим діапазоном вплив адитивної складової похибки ЗВТ зростає настільки, що нею знехтувати не можна і, як наслідок, не можна використати допустиму відносну похибку (3.10) як норму основної похибки ЗВТ.

Loading...

 
 

Цікаве