WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаТехнічні науки → Вимірювач шуму - Курсова робота

Вимірювач шуму - Курсова робота

З іншого боку, критерієм швидкодії є час вирішення задачі, тобто час від моменту реагування оператора на надходження інформації до моменту закінчення керуючих дій оператора. Звичайно, цей час прямо пропорційний кількості інформації, що переробляється оператором:

де а і b — константи, що мають певний фізичний зміст: а — прихований час реакції, який залежить від модальності сигналу і приблизно дорівнює 0,2с; b — величина, яка зворотна швидкості переробки інформації оператором і дорівнює 0,15/0,35 с/біт; H — кількість інформації в бітах.

У разі надходження декількох сигналів оператор приступає до обробки певного сигналу через деякий час, тобто сигнал чекає своєї обробки, на що витрачається певний час — tчек. У цьому випадку швидкодія переробки інформації оператором характеризується двома складовими:

а тривалість циклу регулювання становить:

,

Де - час затримки інформації у i-й ланці машини, а n - кількість ланок машини..

При заданому Тп і відомих (паспортні дані технічних пристроїв) від оператора вимагається така швидкодія:

З іншого боку можна визначити як суму часу кожного з етапів переробки інформації, прийняття рішень і здійснення керуючих дій — t2 і t3.

Таким чином, часові характеристики діяльності оператора в інженерній психології можуть застосовуватись як:

показник часових обмежень;

показник швидкості перебігу нервових процесів;

характеристика процесу навчання;

характеристика узгодженості складових СЛМ.

Точність роботи оператора — це відповідність його дій заданій програмі. Програма роботи може задаватися у вигляді послідовності дій і у вигляді результату, якого потрібно досягти. Але в процесі діяльності операторові доводиться враховувати численні зміни, які доповнюють і уточнюють програму, потребують нових критеріїв оцінок. Завдяки цьому в оператора складається досить конкретна система уявлень про показники діяльності системи, яка формує певний образ-еталон, згідно з яким він організовує свою діяльність і підтримує необхідну точність у процесі реалізації прогрими.

У реальному процесі управління, хоч би як ідеально він був організований, результати дій оператора, а також показники роботи техніки неодмінно мають деякі відхилення від заданих програмних значень, які називають похибками. Поки похибка перебуває в допустимих межах, визначених правилами, інструкціями, програмами тощо, це нормальне явище, і воно принципово не впливає на функціонування системи в цілому. Коли ж похибка перевищує встановлені значення, то це вже порушує нормальну роботу системи, і її кваліфікують як помилку.

У випадках, коли похибка в роботі оператора досягає значення, за якого неможлива подальша, робота оператора або. показники .його діяльності не-можуть забезпечити досягнення поставленої мети, її кваліфікують-як відмову людини-оператора. Точність системи прийнято; характеризувати величиною, зворотною до її найбільш допустимої похибки.

Коли мова йде про систему "людина — машина" то окрема оцінка точності оператора і техніки без урахування їхнього взаємозв'язку буде неповною. Оператор під час керування системою впливає на весь комплекс її параметрів, які, своєю чергою, теж пов'язані між собою, і тому вплив на один із параметрів системи може відобразитися на точності регулювання інших. До того ж похибка в регулюванні різних систем, вимірюється різними одиницями. Ось чому загальна похибка системи має враховувати питому вагу кожної з її складових. Такий підхід дає змогу оцінювати вплив окремих систем на загальну точність її регулювання, прогнозувати процес накопичення в окремих складових системи, що сприяє розробці цілеспрямованих заходів з підвищення точності функціонування СЛМ.

Усі похибки операторів і приладів поділяють на систематичні та випадкові.

Систематичні похибки виникають у разі впливу постійно і однаково діючих факторів, які за значної кількості вимірювань багаторазово повторюються. В оператора вони з'являються через такі причини:

невиконання правил вимірювання;

невиконання правил оцінки результатів;

індивідуальні недоліки, пов'язані з професійними і особистісними якостями.

Систематичні похибки оператора можна зменшити або зовсім ліквідувати шляхом його навчання, створення спеціальних таблиць поправок або внесення певних змін у конструкцію самих приладів.

Випадкові похибки спричинені впливом факторів нестабільної дії, появу яких складно передбачити. Для операторів це, як правило, — довкілля або їх фізичний чи психічний стан. Випадкові похибки людини і техніки ліквідувати неможливо, втім, їх можна зменшити; забезпечивши належну підготовку оператора, сприятливі умови його діяльності, технічне вдосконалення приладів.

Усі похибки вимірювання в оператора або технічних приладів; незалежно від природи їхнього виникнення, поділяють на абсолютні, відносні і приведені,

Абсолютна похибка — це різниця між виміряною і реальною величинами:

Δa = ах - а.

Вона виражається у тих самих одиницях, що і вимірювана величина, і не характеризує точність самого вимірювання.

Відносна похибка — це відношення абсолютної похибки до дійсного значення параметра, виражене у відсотках:

2.5. Розрахунок надійності

Надійністю називають властивість пристрою (елемента або системи) виконувати задані функції в заданих режимах і умовах застосування, технічного обслуговування, ремонтів, зберігання й транспортування протягом необхідного інтервалу часу.

Під розрахунком надійності системи розуміють визначення характеристик надійності:

λс – інтенсивність відмов системи;

Тос – середній час роботи системи (наробіток на відмову);

Рс(t) – імовірність безвідмовної роботи за час експлуатації.

Розрахуємо надійність джерела напруги. Схема представлена на рис. 2.7.

Рис. 2.9

Розрахунок проводимо в припущенні послідовності по надійності включення елементів:

Рс(t)=exp(-λс t)

де К1, К2, К3 - поправочні коефіцієнти, що враховують вплив відповідно механічного навантаження (удари й вібрація), вологості й висотності.

λ0i – номінальна інтенсивність відмов елемента;

λi – коефіцієнт режиму роботи елементів в i-й дорівнює надійній групі;

Ni – кількість елементів.

Виділимо N рівно-надійних груп

Таблиця 2.1

Надійність елементів схеми

Тип елемента

N

λ0ix6

αi

λ0i*αi*N

резистор

1

0,01

0,5

0,6

0,006

котушка

1

0,51

0,5

0,4

0,04

конденсатор керамічний

1

0,1

0,6

0,8

0,08

діод

1

0,2

0,4

0,79

0,158

мікросхема

1

0,1

0,5

1,22

0,122

пайка для з'єднання

18

0,0002

1

1

0,0036

плата друкована

1

0,1

1

1

0,1

Коефіцієнти К2, К3 дорівняємо до одиниці, К1 = 1,05, тому джерело живлення розраховане на портативний прилад (шумомір), тоді λс = 4,972 E-07

Визначимо середній час роботи системи

Тос = 1/ λс = 2010938 годин

Встановимо ймовірність безвідмовної роботи для часу t рівне 1000 годинникам.

Рс(t)=exp(-4,972 x 10-7 x1000)=0.998

У нашій схемі найменш надійний елемент це діод, тому що в нього великий коефіцієнт навантаження. Для зменшення коефіцієнта навантаження зробимо резервування постійним методом, коли й основний, і резервний елемент перебувають в однакових умовах (робітнику режимі) і одночасно виконують ті самі задані функції.

Перевіримо зміну параметра надійності при паралельному включенні двох транзисторів. Імовірність безвідмовної роботи елементів однакові й рівні Р(t) = 0.998, тоді ймовірність всієї системи

Pm1(t) = 1 - [1 - p(t)]m = 1 – [1 – 0.998]2 = 0.999996

Ймовірність безвідмовної роботи схеми Рс(t) = 0,9986

Розрахунок надійності виконуємо з того припущення, що відмова хоча б одного елемента порушує працездатність всієї схеми.

Інтенсивність відмов схеми дорівнює сумі інтенсивностей відмов її компонентів. Інтенсивності відмови компонентів наведені в таблиці 2.2

Таблиця 2.2 – Інтенсивності відмов компонентів

Тип елемента

Кількість елементів, шт.

Інтенсивність відмов

10 -6 година -1

Інтегральні мікросхеми

7

4

Конденсатори

17

0,05

Резистори

16

0,2

Діоди

6

0,25

Світлодіодні індикатори

2

1

Кварц

2

16

Рознімачі

2

0,062

Пайки

238

0,01

Loading...

 
 

Цікаве