WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаЕкономічна теорія → Гетероскедастичність - Реферат

Гетероскедастичність - Реферат


Реферат на тему:
Гетероскедастичність
Виявлення гетероскедастичності та її природа
Розглянемо класичну лінійну багатофакторну модель
Як завжди,
Для застосування МНК при оцінюванні параметрів моделі раніше було сформульовано основні припущення, які на практиці можуть порушуватись.
У попередньому розділі розглядався особливий випадок багатофакторного регресійного аналізу, пов'язаний з проблемою мультиколінеарності. Тепер розглянемо інший особливий випадок, що стосується сталості дисперсії кожної випадкової величини щ (гомоскедастичність залишків).
Означення 5.1. Якщо дисперсія залишків стала для кожного спостереження, то це явище називається гомоскедастичністю:
Якщо це припущення не задовольняється в якомусь окремому випадку то маємо гетероскедастичність (помилки и. некорельовані, але мають несталу дисперсію).
Означення 5.2. Якщо дисперсія залишків змінюється для кожного спостереження або групи спостережень, то це явище називається ге-тероскедастичністю:
Розглянемо питання про доцільність припущення і про те, що відбувається, якщо це припущення не задовольняється.
Насамперед зауважимо, що сутність припущення про гомоскедас-тичність полягає в тому що варіація кожної випадкової складової ина-вколо її математичного сподівання не залежить від значення факторів х:
Форма гетероскедастичності залежить від знаків і значень коефіцієнтів у залежності
У прикладних дослідженнях, як правило, використовують зручне припущення, а саме в разі простої лінійної регресії гетероскедастичність має форму
Наслідки порушення припущення про гомоскедастичність:
1) неможливо знайти середньоквадратичне відхилення параметрів ?2 регресії, а отже, неможливо оцінити значущість параметрів;
2) неможливо побудувати довірчий інтервал для прогнозних значень у ;
3) отримані за МНК оцінки параметрів регресії не є ефективними (не мають найменшої дисперсії).
Зазначимо, що якщо незважаючи на гетероскедастичність ми використовуватимемо звичайні процедури перевірки гіпотез, то висновки можуть бути неправильними. Зрозуміло, гетероскедастичність є суттєвою проблемою, а тому потрібно вміти з'ясовувати її наявність.
Тестування наявності гетероскедастичності
Як і в разі мультиколінеарності, єдиних правил виявлення гетероскедастичності немає, а є різноманітні тести (критерії): критерій ц, параметричний та непараметричний тести Гольдфельда - Квандта, тест Глейсера, тест рангової кореляції Спірмана та ін. Розглянемо лише деякі з них.
Зауважимо, що інколи в ході проведення економетричних досліджень гетероскедастичність вгадується інтуїтивно або висувається як абсолютне припущення:
Наприклад, вивчаючи бюджет сім'ї, можна помітити, що дисперсія залишків зростає відповідно до зростання доходу. Отже, перший крок до виявлення гетероскедастичності - глибокий аналіз змісту досліджуваної проблеми.
Крім того, існує графічний метод тестування наявності гетероскедастичності, що ґрунтується на встановленні наявності систематичного зв'язку квадратів залишків регресійної моделі, побудованої на основі припущення про відсутність гетероскедастичності (графічний аналіз).
Параметричний тест Гольдфельда - Квандта
Зауваження. 1. Цей тест застосовується до великих вибірок. 2. Тест припускає нормальний розподіл і незалежність випадкових величин и..
1-й крок:
спостереження (вихідні дані) впорядкувати відповідно до величини елементів вектора х., який може спричинити зміну дисперсії залишків.
2-й крок:
відкинути спостережень, які розміщені всередині векторів вихідних даних
3-й крок:
побудувати дві моделі на основі звичайного МНК за двома створеними сукупностями спостережень обсягом за умови, що де т - кількість змінних.
4-й крок:
знайти суму квадратів залишків S1 і S2 за першою і другою моделями:
де щ і и2 - залишки відповідно за першою і другою моделями.
5-й крок:
розрахувати критерій який у разі виконання гіпотези про гомоскедастичність відповідатиме розподілу з
ступенями свободи;
значення критерію f порівняти з табличним значенням F-критерію при вибраному рівні значущості а і відповідних ступенях свободи;
Зауваження: чим більше значення Ґ, тим більша гетероскедастичність залишків.
Непараметричний тест Гольдфельда - Квандта
Цей тест базується на встановленні кількості піків значень залишків після впорядкування (ранжування) спостережень зал:... Якщо для всіх значень змінної залишки розподіляються приблизно однаково, то дисперсія їх однорідна і гетероскедастичність відсутня. Якщо вона змінюється, то гетероскедастичність присутня.
Зазначимо, що цей тест не цілком надійний для перевірки на гетероскедастичність. Однак він дуже простий і часто використовується для першої оцінки наявності гетероскедастичності множини спостережень.
Тест Глейсера
Перевірка на гетероскедастичність базується на побудові регресійної функції, що характеризує залежність величини залишків за модулем від пояснюючої змінної х-, яка може зумовити зміну дисперсії залишків.
Аналітична форма регресійних функцій може мати вигляд u=а0 +а1х., u=а0 +а1х-1, u=а0 +а1х12 і т.ін.
Рішення про відсутність гетероскедастичності залишків приймається на основі значущості коефіцієнтів а0 а1. Перевага цього методу полягає в можливості розрізняти випадок чистої і змішаної гетероскедастичності. Залежно від цього потрібно використовувати різні матриці S.
Оскільки явище гетероскедастичності пов'язане з тим, що змінюються дисперсії залишків, а коваріація між ними відсутня, то матриця S у співвідношенні має бути додатно визначеною й діагональною.
Приклад. Перевірити гіпотезу про відсутність гетероскедастичності для побудови моделі, яка характеризує залежність заощаджень від доходів населення. Статистичні дані наведено в таблиці.
Розв'язання. Ідентифікуємо змінні: у - заощадження, х - дохід. Специфікуємо модель у вигляді
де u - стохастична складова моделі.
Для перевірки гіпотези про відсутність гетероскедастичності залишків моделі застосуємо параметричний тест Гольдфельда - Квандта.
1-й крок:
спостереження впорядкуємо за зростанням за величиною доходу (вектор х), який може спричинити зміну дисперсії залишків.
2-й крок:
відкинемо с спостережень усередині вектора вихідних даних, де
с = %,п- кількість елементів вектора х Отже,
Отримаємо дві сукупності спостережень обсягом 184 = 7. Перша сукупність спостережень:
Друга сукупність спостережень:
3-й крок:
побудуємо дві моделі на основі звичайного МНК за двома ство-реними сукупностями спостережень:
4-й крок:
знайдемо суму квадратів залишків S1 і S2 за першою і другою моделями:
де u1 і u2 - залишки відповідно за першою і другою моделями. 5-й крок:
розрахуємо критерій
який у разі виконання гіпотези про гомоскедастичність відповідатиме ^-розподілу
ступенями свободи;
значення критерію f порівняємо з табличнимзначенням F-критерію при рівні значущості ? = 0,05 і відповідних ступенях свободи:
табл=Д0,05; 5) = 5,05.
Отже, МНК-оцінки параметрів регресійної моделі можуть застосовуватися для подальших досліджень.
Трансформування початкової моделі
Розглянемо питання усунення гетероскедастичності трансформуванням початкової моделі.
Припустимо, що за статистичними даними побудовано початкову регресійну модель і на базі будь-якого тесту встановлено наявність гетероскедастичності:
Для усунення гетероскедастичності початкову модель змінюють (трансформують) так, щоб помилки мали сталу дисперсію:
Трансформація моделі зводиться до зміни початкової форми моделі методом, який залежить від специфічної форми гетероскедастичності, тобто від форми залежності між дисперсіями залишків і значеннями незалежних змінних:
Розглянемо можливі випадки трансформації моделі на прикладі простої лінійної регресії. Нехай початкова модель де компоненти випадкового вектора и гетероскедастичні, але відповідають іншим класичним припущенням лінійної регресії.
Розглянемо такі
Loading...

 
 

Цікаве