WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаЕкономічна теорія → Кореляційно-регресійний аналіз в економіці - Реферат

Кореляційно-регресійний аналіз в економіці - Реферат


Реферат на тему:
Кореляційно-регресійний аналіз в економіці
У багатьох задачах потрібно встановити та оцінити залежність деякого економічного показника від одного чи кількох інших показників. Очевидно, будь-які економічні показники, зазвичай, перебувають під впливом випадкових факторів, а тому з математичної точки зору інтерпретуються як випадкові величини.
З теорії ймовірностей відомо, що випадкові величини можуть бути пов'язані функціональною чи статистичною залежністю або ж узагалі бути незалежними. Звичайно, співвідношення між незалежними змінними тут не розглядаються. Строга функціональна залежність реалізується в економіці рідко. Частіше спостерігається так звана статистична залежність.
Нагадаємо, що статистичною називають залежність, коли зі змінюванням однієї випадкової величини змінюється закон розподілу ймовірностей іншої. Зокрема, статистична залежність виявляється в тому що зі змінюванням однієї величини змінюється середнє значення іншої. Така залежність називається кореляційною.
Наприклад, у землеробстві з однакових за площею ділянок землі при рівних кількостях внесених добрив збирають різний врожай. Звичайно, немає строгої функціональної залежності між урожайністю землі та кількістю внесених добрив. Це пояснюється впливом випадкових факторів (опади, температура повітря, розташування ділянки тощо). Водночас, як показує досвід, середній врожай залежить від кількості внесених добрив, тобто зазначені показники, напевне, пов'язані кореляційною залежністю.
Можна зазначити два типи взаємозв'язку змінних. В одному випадку невідомо, яка зі змінних незалежна, а яка - залежна, тобто вони рівноправні й зв'язок можна розглядати як в один, так і в інший бік. У другому випадку змінні нерівноправні, тобто змінювання лише однієї з них впливає на змінювання іншої, а не навпаки. У цьому разі при розгляді зв'язку між двома змінними величинами важливо встано-вити на основі логічного міркування, яка з ознак є причиною, а яка -наслідком. Наприклад, урожайність залежить від родючості землі, а не навпаки, тобто економічна оцінка землі є незалежною змінною, а врожайність-залежною.
Варто мати на увазі, що статистичний аналіз залежностей сам по собі не розкриває сутності причинних зв'язків між явищами, тобто він не вирішує питання, з яких причин одна змінна впливає на іншу. Розв'язок такої задачі є результатом якісного (змістовного) вивчення зв'язків, що обов'язково має або передувати статистичному аналі-зу, або супроводжувати його.
Нехай з певних економічних міркувань встановлено, що деякий економічний показник x є причиною змінювання іншого показника y. Статистичні дані по кожному з показників інтерпретуються як деякі реалізації випадкових величин X і Y. Як відомо з курсу теорії ймовір-ностей, математичним сподіванням випадкової величини називаєть-ся її середнє (арифметичне чи зважене) значення. А залежність се-реднього значення від іншої випадкової величини зображується за допомогою умовного математичного сподівання.
Кореляційну залежність між ними або залежність в середньому в загальному випадку можна подати у вигляді співвідношення
де M(Y | x) - умовне математичне сподівання.
Функція f(x) називається функцією регресії YнаX. При цьому X називається незалежною (пояснюючою) змінною (регресором), Y - за-лежною (пояснюваною) змінною (регресандом). Розглядаючи за-лежність двох випадкових величин, говорять про парну регресію.
Залежність Yвід кількох змінних, що описується функцією
називають множинною регресією.
Термін "регресія" (рух назад, повернення до попереднього стану) увів Френсіс Галтон наприкінці XIX ст., проаналізувавши залежність між зростом батьків і зростом дітей. Він помітив, що зріст дітей у ду-же високих батьків у середньому менший, ніж середній зріст батьків. У дуже низьких батьків, навпаки, середній зріст дітей вищий. В обох випадках середній зріст дітей прямує (повертається) до середнього зросту людей у даному регіоні. Звідси й вибір терміна, що відбиває таку залежність.
Однак реальні значення залежної змінної не завжди збігаються з її умовним математичним сподіванням, тому аналітична залежність (у вигляді функції y = f(x)) має бути доповнена випадковою скла-довою u, що, власне, і вказує на стохастичну сутність залежності.
Означення 1.1. Зв'язки між залежною та незалежною (незалежними) змінними, що описуються співвідношеннями
називають регресійними рівняннями (моделями).
Виникає питання про причини обов'язкової присутності в ре-гресійних моделях випадкового фактора (відхилення). Серед таких причин виокремимо найістотніші.
1. Уведення в модель не всіх пояснюючих змінних. Будь-яка регре-сійна (зокрема, економетрична) модель - це спрощення реальної си-туації. Остання завжди є складною композицією різних факторів, багато з яких у моделі не враховуються, що призводить до відхилення реальних значень залежної змінної від її модельних значень. На-приклад, попит на товар визначається його ціною, цінами на товари-замінники, на товари, що його доповнюють, прибутком споживачів, їхніми смаками, уподобаннями тощо. Безумовно, перелічити всі пояс-нюючі змінні практично неможливо. Зокрема, неможливо врахувати такі фактори, як традиції, національні чи релігійні особливості, геогра-фічне положення району, погоду та багато інших, вплив яких призво-дить до деяких відхилень реальних спостережень від модельних. Ці відхилення можуть бути описані як випадкова складова моделі.
У деяких випадках заздалегідь невідомо, які фактори за умов, що склалися, насправді є визначальними, а якими можна знехтувати. Крім того, інколи безпосередньо врахувати якийсь фактор немож-ливо через відсутність статистичних даних. Наприклад, обсяг заощаджень домогосподарств може визначатися не лише прибутками їх членів, а й станом здоров'я останніх, інформація про яке в цивілізованих країнах становить лікарську таємницю. У деяких ситуаціях ряд факторів має принципово випадковий характер, що додає неоднозначності певним моделям, наприклад погода в моделях, що прогнозують обсяг врожаю.
2. Неправильний вибір функціональної форми моделі. Через слабку вивченість досліджуваного процесу або через його мінливість може бути неправильно дібрано функцію, що його моделює. Це, безумовно, спричинить відхилення моделі від реальності, що позначиться на величині випадкової складової. Наприклад, виробнича функція (Y) одного фактора (X) може моделюватися функцією Y = а + ЬХ, хоча мала б використовуватися інша модель: Y = аХ (0 < b 0 -величина автономного споживання; b - гранична схильність до споживання, 0 < b < 1.
Однак поки не обчислено кількісні значення коефіцієнтів с0 і b й не перевірено надійність отриманих результатів, зазначена формула залишається лише гіпотезою.
Список використаної літератури
1. Айвазян С. А., Мхитарян В. С. Прикладная статистика и основы эконометрики: Учебник для вузов. - М.: ЮНИТИ, 1998. - 1022 с.
2. Бородин С. А. Эконометрика: Учеб. пособие. - Минск: Новоезнание,2001. - 408 с.
3. Грубер Й. Економетрія: Вступ до множинної регресії та економетрії: У 2 т. - К: Нічлава, 1998-1999.
4. Джонстон Дж. Эконометрические методы. - М.: Статистика, 1980. - 444 с.
5. Доугерти К. Введение в эконометрику: Пер. с англ. - М.: ИНФРА-М, 1997. - 402 с.
6. Дрейпер П., Смит Г. Прикладной регрессионный анализ. - М.: Финансы и статистика, 1986. - Т. 1 - 365 с; Т. 2 - 379 с.
7. Емельянов А. С. Эконометрия и прогнозирование. - М.: Экономика, 1985. - С. 82-89.
8. Єлейко В. Основи економетрії. - Львів: "Марка Лтд", 1995. - 191с.
9. Замков О. О., Толстопятенко А. В., Черемных Ю. Н. Математические методы в экономике: Учебник / Под общ. ред. А. В. Сидоровича. - 3-е изд., перераб. - М.: Дело и Сервис, 2001. - 368 с. - (Сер. "Учебники МГУ им. М. В. Ломоносова").
10. Кейн Э. Экономическая статистика и эконометрия. Введение в количественный экономический анализ. - М.: Статистика, 1977. - 254 с.
11. Корольов О. А. Економетрія: Навч. посіб. - К: Європейський ун-т,
12. 2002. - 660 с.
13. Ланге О. Введение в эконометрию. - М.: Прогресс, 1964. - 360 с.
14. Лук'яненко I. Г., Краснікова Л. І. Економетрика: Підручник. - К.: Т-во "Знання", КОО, 1998. - 494 с
Loading...

 
 

Цікаве