WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаЕкономіка (різне) → Побудова загальної лінійної моделі - Реферат

Побудова загальної лінійної моделі - Реферат

Реферат на тему:

Побудова загальної лінійної моделі

Для того щоб кількісно описати зв'язок між кількома або багатьма змінними, одна з яких є залежною, інші — незалежними змінними, необхідно розглянути лінійну економетричну модель, яка базується на регресійному аналізі.

У загальному вигляді цю модель можна записати так:

де — залежна змінна;

— незалежні змінні;

u — стохастична складова.

Залежна змінна Y називається також пояснюваною, ендогенною змінною, незалежні змінні Xj — пояснюючими, предетермінованими, екзогенними змінними.

Аналітична форма загальної лінійної економетричної моделі:

,

де — параметри моделі.

В матричній формі економетрична модель має такий вигляд:

,

X — матриця незалежних змінних; A — вектор оцінок параметрів моделі; u — вектор залишків.

Щоб оцінити параметри моделі на основі методу 1МНК, необхідно дотримуватися таких передумов (гіпотез):

1) математичне сподівання залишків має дорівнювати нулю, тобто

;

2) значення вектора залишків u незалежні між собою і мають постійну дисперсію:

  1. незалежні змінні моделі не зв'язані із залишками, тобто

;

4) незалежні змінні моделі створюють лінійно-незалежну систему векторів, тобто

Оператор оцінювання параметрів моделі на основі 1МНК:

Неважко довести, що оцінки , які можна отримати на основі оператора оцінювання 1МНК, мінімізують суму квадратів залишків u. При цьому значення вектора є розв'язком нормальної системи рівнянь:

Якщо незалежні змінні в матриці X взяті як відхилення кожного значення від своєї середньої, то матрицю називають матрицею моментів. Числа, що стоять на її головній діагоналі, характеризують величину дисперсій незалежних змінних, інші елементи відповідають взаємним коваріаціям.

Оцінки параметрів загальної економетричної моделі повинні мати такі властивості:

1) незміщеності;

2) обгрунтованості;

3) ефективності;

4) інваріантності.

Оцінка параметра моделі буде незміщеною, коли дотримується рівність:

.

Якщо ця рівність не дотримується, то різниця називається зміщенням оцінки.

Оцінка параметра моделі буде обгрунтованою, якщо при заданій малій величині справедливе відношення:

.

Оцінки параметрів A називаються ефективними, коли вони мають найменшу дисперсію.

Якщо функція відповідає функції , то оцінки параметрів A є інваріантними.

Загальна економетрична модель: побудова й аналіз

Приклад 2.1. Побудувати економетричну модель, яка характеризує залежність між витратами на харчування, загальними затратами та складом сім'ї на основі даних, наведених у табл. 2.1. Проаналізувати зв'язок, визначений на основі побудованої моделі.

Таблиця 2.1

№ п / п

Витрати на харчування

Загальні затрати

Склад сім'ї

1

2

3

4

1

20

45

1,5

2

32

75

1,6

3

48

125

1,9

4

65

223

1,8

5

45

92

3,4

6

64

146

3,6

7

79

227

3,5

8

104

358

5,5

9

68

135

5,4

10

93

218

5,4

11

117

331

5,3

Закінчення табл. 2.1

1

2

3

4

12

145

490

8,5

13

91

175

8,3

14

131

205

8,1

15

167

468

7,3

16

195

749

8,4

Розв'язання:

1. Ідентифікуємо змінні моделі:

Y — витрати на харчування (залежна змінна);

X1 — загальні витрати (незалежна змінна);

X2 — розмір сім'ї (незалежна змінна);

u — залишки (стохастична складова).

Загальний вигляд моделі:

.

2. Специфікуємо модель, тобто в даному випадку визначимо її аналітичну форму:

3. Оцінимо параметри моделі на основі методу 1МНК, попередньо висунувши гіпотезу, що всі чотири передумови для його застосування дотримані.

Оператор оцінювання на основі 1МНК:

У даному операторі матриця X характеризує всі незалежні змінні моделі. Оскільки економетрична модель має вільний член , для якого всі , то матрицю X треба доповнити першим стовпцем, в якому всі шістнадцять членів є одиницями. — матриця, транспонована до матриці, а вектор — вектор залежної змінної.

;

;

.

Підставимо отримані значення оберненої матриці і добуток матриць в оператор оцінювання і визначимо оцінки параметрів моделі:

;

Таким чином, Звідси еконо-метрична модель має вигляд:

.

  1. Визначимо розрахункові значення залежної змінної на основі моделі, підставивши в неї значення незалежних змінних та . Потім віднімемо розрахункові значення від фактичних , в результаті отримаємо залишки: . Всі ці розрахунки наведені в табл. 2.2.

Таблиця 2.2

п / п

1

28,1424

–8,1424

66,2979

–71,5000

5112,2500

2

34,3382

–2,3382

5,4673

–59,5000

3540,2500

3

45,5785

2,4215

5,8637

–43,5000

1892,2500

4

63,9961

1,0039

1,0077

–26,5000

702,2500

5

49,7976

–4,7976

23,0169

–46,5000

2162,2500

6

61,0872

2,9128

8,4843

–27,5000

756,2500

7

75,2802

3,7198

13,8372

–12,5000

156,2500

8

113,0501

–9,0501

81,9051

12,5000

156,2500

9

71,4035

–3,4035

11,5837

–23,5000

552,2500

10

86,6492

6,3508

40,3332

1,5000

2,2500

11

106,7200

10,2800

105,6793

23,5000

650,2500

12

157,8576

–12,8576

165,3171

53,5000

2862,2500

13

98,6267

–7,6267

58,1665

–0,5000

0,2500

14

121,1347

9,8653

97,3237

39,5000

1560,2500

15

145,5920

21,4080

458,3011

75,5000

5700,2500

16

204,7461

–9,7461

94,9859

103,5000

10712,2500

Всього

0,0000

1237,5704

36518,0000

5. Розрахуємо дисперсії залишків та залежної змінної :

6. Визначимо матрицю коваріацій оцінок параметрів моделі:

.

Діагональні елементи цієї матриці характеризують дисперсії оцінок параметрів моделі:

Інші елементи даної матриці визначають рівень коваріації між оцінками параметрів моделі.

7. Знайдемо стандартні помилки оцінок параметрів:

Порівняємо стандартні помилки оцінок параметрів моделі з величиною оцінки. Так, співвідношення стандартної помилки й абсолютного значення параметра становить 56% , параметра — 10,6%, параметра — 20,4%. Перше й третє співвідношення свідчать про те, що оцінки параметрів моделі і можуть мати зміщення, а друге співвідношення підтверджує незміщеність оцінки параметра .

8. Дамо змістовне тлумачення параметрів моделі.

Оцінка параметра характеризує граничну зміну величини витрат на харчування залежно від зміни загальних затрат на одиницю. Тобто, якщо загальні затрати сім'ї зростуть на одиницю, то витрати на харчування в них збільшаться на 0,18 одиниці при незмінному складі сім'ї.

Оцінка параметра характеризує граничне зростання витрат на харчування при збільшенні сім'ї на одного члена. Так, якщо склад сім'ї збагатиться ще одним членом, то витрати на харчування зростуть на 6,854 одиниці при незмінній величині доходу.

ЛІТЕРАТУРА

  1. Джонстон Дж. Эконометрические методы.— М., 1980.

  2. Дрейлер Н., Смит Г. Прикладной регрессионный анализ. — М.: Финансы и статистика, 1986.

  3. Кейн Э. Экономическая статистика и эконометрия. — М.: 1977.– Вып.12.

  4. Класc А., Гергели К., Колек Ю., Шуян И. Введение в эконометрическое моделирование. –– М., 1975.

  5. Крамер Г. Математические методы статистики. — М., 1975.

  6. Ланге О. Введение в эконометрику. –– М., 1964.

  7. Лизер С. Эконометрические методы и задачи. –– М., 1971.

  8. Линник Ю.В. Метод наименьших квадратов и основы математико-статистической обработки наблюдений. — М., 1962.

  9. Маленво Э. Статистические методы в эконометрии. — М., 1975 – 1976. Вып. 1,2.

  10. Мальцев А.Н. Основы линейной алгебры. –– М., 1975.

  11. Пирогов Г., Федоровский Ю. Проблемы структурного оценивания в эконометрии. –– М., 1979.

  12. Тинтнер Г. Введение в эконометрию. –– М., 1964.

  13. Фишер Ф. Проблема идентификации в эконометрии. — М., 1978.

  14. Чупров А.А. Основные проблемы теории корреляции. — М., 1960. 2-е изд.

  15. Klein L.R., Goldberger A.S. An Ekonometric Model of United States, 1929 – 1952 North Holland, Amsterdam, 1964.

Loading...

 
 

Цікаве