WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаЕкономіка (різне) → Гетероскедастичність - Реферат

Гетероскедастичність - Реферат

Параметричний тест Гольдфельда — Квандта

Коли сукупність спостережень невелика, то розглянутий метод не застосовний.

У такому разі Гольдфельд і Квандт запропонували розглянути випадок, коли , тобто дисперсія залишків зростає пропорційно до квадрата однієї з незалежних змінних моделі:

Y = XA + u.

Для виявлення наявності гетероскедастичності згадані вчені склали параметричний тест, в якому потрібно виконати такі кроки.

Крок 1. Упорядкувати спостереження відповідно до величини елементів вектора Xj.

Крок 2. Відкинути c спостережень, які містяться в центрі вектора. Згідно з експериментальними розрахунками автори знайшли оптимальні співвідношення між параметрами c і n, де n — кількість елементів век-тора :

Крок 3. Побудувати дві економетричні моделі на основі 1МНК за двома утвореними сукупностями спостережень за умови, що перевищує кількість змінних m.

Крок 4. Знайти суму квадратів залишків за першою (1) і другою (2) моделями і :

, де — залишки за моделлю (1);

, де — залишки за моделлю (2).

Крок 7. Обчислити критерій

який в разі виконання гіпотези про гомоскедастичність відповідатиме F-розподілу з , ступенями свободи. Це означає, що обчислене значення R* порівнюється з табличним значенням F-критерію для ступенів свободи і і вибраного рівня довіри. Якщо , то гетероскедастичність відсутня.

Приклад 7.3. У табл. 7.3 наведено дані про загальні витрати та витрати на харчування. Для цих даних перевірити гіпотезу про відсутність гетероскедастичності.

Таблиця 7.3

Номер спостереження

Витрати нахарчування

Загальні витрати

u

u2

1

2,30

15

2,16

0,14

0,020

2

2,20

15

2,16

0,04

0,002

3

2,08

16

2,20

-0,12

0,015

4

2,20

17

2,25

-0,05

0,002

5

2,10

17

2,25

-0,15

0,022

6

2,32

18

2,29

0,26

0,0007

7

2,45

19

2,34

0,11

0,012

8

2,50

20

9

2,20

20

10

2,50

22

11

3,10

64

12

2,50

68

2,37

0,13

0,016

13

2,82

72

2,52

0,29

0,085

14

3,04

80

2,68

0,36

0,128

15

2,70

85

2,99

-0,29

0,084

16

3,94

90

3,18

0,76

0,573

17

3,10

95

3,38

-0,28

0,076

18

3,99

100

3,57

0,42

0,178

Розв'язання.

1. Ідентифікуємо змінні:

Y — витрати на харчування, залежна змінна;

X — загальні витрати, незалежна змінна;

Y = f (X, u).

2. Для перевірки гіпотези про відсутність гетероскедастичності застосуємо параметричний тест Гольдфельда - Квандта.

2.1. Упорядкуємо значення незалежної змінної від меншого до більшого і відкинемо c значень, які містяться всередині впорядкованого ряду:

c 4.

2.3. Визначимо залишки за цими двома моделями:

uI= YI ;

uII= YII .

Залишки та квадрати залишків наведено в табл. 7.3.

2.4. Обчислимо залишкові дисперсії та знайдемо їх співвідношення:

2.5. Порівняємо критерій R* з критичним значенням F-критерію при 1= 5 і 2= 5 ступенях свободи і рівні довіри Р = 0,99 F= 0,01 = 11. Оскільки R* > Fкр, то вихідні дані мають гетероскедастичність.

Непараметричний тест Гольдфельда - Квандта

Гольдфельд і Квандт для оцінювання наявності гетероскедастичності запропонували також непараметричний тест. Цей тест базується на числі піків у величини залишків після упорядкування спостережень за .

Закономірність зміни залишків, коли дисперсія є однорідною, — явище гомоскедастичності ілюструє рис. 7.1, а на рис.7.2 спостерігається явище гетероскедастичності.

Цей тест, звичайно, не такий надійний, як параметричний, але він досить простий.

Зауважимо, що на рис.7.1 зображено, як змінюються залишки, що мають постійну дисперсію, а на рис.7.2 — залишки, дисперсія яких змінна для різних груп стостережень.

Тест Глейсера

Ще один тест для перевірки гетероскедастичності склав Глейсер. Він запропонував розглядати регресію абсолютних значень залишків , що відповідають регресії найменших квадратів, як певну функцію від , де — та незалежна змінна, яка відповідає зміні дисперсії . Для цього використовуються такі види функцій:

1)

2)

3) і т.ін.

Рішення про відсутність гетероскедастичності залишків приймається на підставі статистичної значущості коефіцієнтів і . Переваги цього тесту визначаються можливістю розрізняти випадок чистої і замішаної гетероскедастичності. Чистій гетероскедастичності відповідають значення параметрів , а змішаній — . Залежно від цього треба користуватись різними матрицями S. Нагадаємо, що .

Приклад 7.4. Нехай потрібно перевірити наявність гетероскедастичності при побудові економетричної моделі, яка описуватиме залежність між доходом і рівнем заощаджень. Вихідні дані наведено в табл.7.4.

Таблиця 7.4

Місяць

Дохід

Заощадження

Місяць

Дохід

Заощадження

1

10,8

2,36

10

17,5

2,59

2

11,4

2,20

11

18,7

2,90

3

12,0

2,08

12

19,7

2,95

4

12,6

2,20

13

20,6

2,82

5

13,0

2,10

14

21,7

3,04

6

13,9

2,12

15

23,1

3,53

7

14,7

2,41

16

24,8

3,44

8

15,5

2,50

17

25,9

3,75

9

16,3

2,43

18

27,2

3,99

Використаємо параметричний тест Гольдфельда — Квандта для встановлення гетероскедастичності при визначенні залежності між наведеними показниками.

Розв'язання. Ідентифікуємо змінні:

Y — заощадження — залежна змінна;

Х — дохід — пояснювальна змінна, Y = f(X).

Крок 1. Вихідна сукупність спостережень упорядковується відповідно до величини елементів вектора Х, який може впливати на зміну величини дисперсії залишків. Оскільки в табл. 7.3 дані про дохід упорядковані, то переходимо до наступного кроку.

Крок 2. Відкинемо c спостережень, які міститимуться в центрі векторів Х і Y, де , і поділимо сукупність спостережень на дві частини, кожна з яких містить спостережень.

Крок 3. Побудуємо економетричну модель за першою сукупністю, яка включає спостереження від першого по сьомий місяць включно: . Система нормальних рівнянь для визначення параметрів цієї моделі запишеться так:

Звідси = 2,1216;

= 0,007.

Loading...

 
 

Цікаве