WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаЕкономіка (різне) → Дисперсійний аналіз економетричної моделі - Реферат

Дисперсійний аналіз економетричної моделі - Реферат

Множинний коефіцієнт кореляції:

Він характеризує тісноту зв'язку усіх незалежних змінних із залежною.

Для множинного коефіцієнта кореляції з урахуваннням і без урахуванння числа ступенів свободи характерна така сама зміна числового значення, як і для коефіцієнта детермінації.

Приклад 5.2. Порівняємо коефіцієнти кореляції і детермінації для різних економетричних моделей, побудованих для вихідних даних, наведених у табл. 5.1, на основі покрокової регресії.

Таблиця 5.3

Економетрична модель

з урахуванням числа ступенів свободи

з урахуван-ням числа сту-пенів свободи

0,811

0,811

0,900

0,900

0,847

0,828

0,921

0,910

0,857

0,817

0,926

0,904

З табл. 5.3 бачимо, що з додатковим введенням нової незалежної змінної коефіцієнти детермінації і кореляції без урахування числа ступенів свободи збільшуються, ці самі характеристики з урахуванням числа ступенів свободи для другої моделі, яка має дві незалежні змінні, зростають, а для третьої — з трьома незалежними змінними — вони спадають. Тобто для третьої моделі в результаті введення додаткової змінної зменшення величини не зможе компенсувати збільшення відношення . Зауважимо при цьому, що коефіцієнти детермінації і кореляції без урахування числа ступенів свободи мають більші числові значення, ніж з урахуванням цього числа.

Розглянемо альтернативний спосіб обчислення коефіцієнтів детермінації і кореляції, коли система нормальних рівнянь будується на основі коефіцієнтів парної кореляції .

У такому разі оцінку параметрів моделі можна записати:

(5.10)

де — алгебраїчне доповнення матриці до елемента .

Сума квадратів відхилень (залишків) також може бути виражена через алгебраїчне доповнення матриці :

де — визначник кореляційної матриці. А це, у свою чергу, дає нам альтернативний вираз для коефіцієнта детермінації:

(5.11)

Ще один альтернативний метод розрахунку коефіцієнтів детермінації на основі матриці можна подати у вигляді

(5.12)

Звідси коефіцієнт кореляції

(5.13)

Частинні коефіцієнти кореляціїі коефіцієнти регресії

Частинні коефіцієнти кореляції так само, як і парні, характеризують тісноту зв'язку між двома змінними. Але на відміну від парних частинні коефіцієнти характеризують тісноту зв'язку за умови, що інші незалежні змінні сталі.

Можна дістати спрощений вираз для розрахунку коефіцієнта частинної кореляції, обравши інший спосіб інтерпретації цього коефіцієнта. Для випадку простої регресії двох змінних маємо

де характеризує коефіцієнт при у рівнянні , а — коефіцієнт при в рівнянні . Отже, квадрат коефіцієнта парної кореляції дорівнює добутку двох наведених коефіцієнтів. Коефіцієнт частинної кореляції можна визначити аналогічно. Наприклад, розглянемо два регресійні рівняння:

;

Нехай в цих рівняннях дорівнює деякій довільній величині , тоді член, який відповідає змінній збігатиметься з вільним членом, а отже, дістанемо дві прості регресії, які відбивають загальну зміну і на площині = . Оскільки модель є лінійною, то коефіцієнти регресії і лишаються незмінними при різних значеннях , тобто можна стверджувати: квадрат коефіцієнта частинної кореляції між і дорівнює добутку коефіцієнтів при і у двох множинних регресіях.

Згідно з (5.10) запишемо ці рівняння у вигляді

де — алгебраїчні доповнення до елемента матриці .

Звідси

.

Для знаходження частинного коефіцієнта кореляції змінної y з x2 за умови, що змінна x3 стала, достатньо взяти добуток параметрів при x2 і y в наведених щойно рівняннях з протилежним знаком.

Аналогічно

Тоді частинні коефіцієнти кореляції будуть такі:

; (5.14)

Ці висновки можна поширити на випадок, коли економетрична модель має незалежних змінних , але при цьому решта незалежних змінних (крім двох) є константами.

Перевірка значущості і довірчі інтервали

Значущість економетричної моделі

Гіпотезу про рівень значущості зв'язку між залежною і незалежною змінними можна перевірити з допомогою F-критерію:

(5.15)

При цьому ми виходимо з того, що залишки u розподілені нормально, тобто користуємося фундаментальною теоремою про те, що для нормально розподіленої випадкової величини з нульовою середньою і одиничною дисперсією сума квадратів її n випадково вибраних значень має розподіл з n ступенями свободи.

Дисперсії, які застосовуються для обчислення F-критерію, наведено в табл.5.2.

Фактичне значення F-критерію порівнюється з табличним при ступенях свободи n m і m – 1 і вибраному рівні значущості. Якщо Fфакт > Fтабл, то гіпотеза про істотність зв'язку між залежною і незалежними змінними економетричної моделі підтвержується, у противному разі - відкидається.

Приклад 5.3. Обчислимо F-критерій для економетричних моделей (5.6), розглянутих у прикладі 5.1 (табл. 5.4).

Таблиця 5.4

Економетрична модель

Число ступенівсвободи

F-критерій

1)

34,24

2)

19,45

3)

12,09

F1табл (0,95) для першої моделі дорівнює 5,32.

F2табл (0,95) для другої моделі дорівнює 4,74.

F3табл (0,95) для третьої моделі дорівнює 4,76.

Отже, при рівні значущості = 0,05:

F1факт > Fтабл ,

F2факт > Fтабл ,

F3факт > Fтабл .

Це означає, що відповідні економетричні моделі є вірогідними, тобто підтверджується гіпотеза про те, що кількісна оцінка зв'язку між залежною і незалежними змінними в моделі є істотною.

Скориставшись виразами дисперсій, які наведено в табл.5.2:

а також формулою для обчислення коефіцієнта детермінації запишемо альтернативну форму F-критерію:

. (5.16)

Згідно з цим критерієм перевіряється значущість коефіцієнта детермінації, а отже, й усієї моделі.

Цей результат підводить базу під традиційно дисперсійний аналіз, який застосовується для перевірки нульових гіпотез.

Значущість коефіцієнта кореляції

Оскільки коефіцієнт кореляції є також вибірковою характеристикою, яка може відхилятись від свого "істинного" значення, значущість коефіцієнта кореляції також потребує перевірки. Базується вона на t-критерії

де — коефіцієнт детермінації моделі; — коефіцієнт кореляції; — число ступенів свободи.

Якщо , де — відповідне табличне значення t-розподілу з ступенями свободи, то можна зробити висновок про значущість коефіцієнта кореляції між залежною і незалежними змінними моделі.

Приклад 5.4. Для множинних коефіцієнтів кореляції, які наведено в табл.5.3, обчислимо значення t- критерію:

Табличні значення цього критерію при рівні значущості = 0,05 і відповідних ступенях свободи такі:

t1табл = 1,860;

t2табл = 1,895;

t3табл = 1,943.

Порівнюючи їх з фактичними, де

t1 > t1табл,

t2 > t2табл,

t3 > t3табл,

доходимо висновку, що коефіцієнти кореляції, які характеризують тісноту зв'язку між залежною і незалежними змінними в моделях, є достовірними.

Значущість оцінок параметрів моделі

Перевіримо значущість оцінок параметрів і знайдемо для них довірчі інтервали, припустивши для цього, що залишки u нормально розподілені, тобто . Тоді параметри моделі задовольняють багатовимірний нормальний розподіл:

(5.17)

Коли відома величина , то цей результат можна бути використати для перевірки значущості елементів вектора та оцінювання довірчих інтервалів елементів цього вектора. Проте дисперсія невідома, а отже, потрібно розглянути методи її знаходження.

Для цього визначимо залишки:

(5.18)

Таким чином, залишки, які можна дістати на підставі експериментальних даних, записано у вигляді лінійних функцій від невідомих залишків . Тоді суму квадратів відхилень подамо у вигляді

(5.19)

де N— симетрична ідемпотентна матриця.

У цих перетвореннях ми виходили з того, що N є симетричною ідемпотентною матрицею, оскільки En — одинична матриця, а — симетрична розміром n m.

Loading...

 
 

Цікаве