WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаЕкономіка (різне) → Методи побудови загальної лінійної моделі - Реферат

Методи побудови загальної лінійної моделі - Реферат

Передумови застосування методу найменших квадратів (1МНК)

Нехай економетрична модель у матричній формі має вигляд

(4.1)

де Y — вектор значень залежної змінної;

X — матриця незалежних змінних розміром (n — число спостережень, m — кількість незалежних змінних);

A — вектор оцінок параметрів моделі;*

u — вектор залишків.

Щоб застосувати 1МНК для оцінки параметрів моделі, необхідне виконання таких умов:

1) математичне сподівання залишків дорівнює нулю, тобто

(4.2)

2) значення ui вектора залишків u незалежні між собою і мають постійну дисперсію, тобто

(4.3)

де Е — одинична матриця;

3) незалежні змінні моделі не пов'язані із залишками:

(4.4)

4) незалежні змінні моделі утворюють лінійно незалежну систему векторів, або, іншими словами, незалежні змінні не повинні бути мультиколінеарними, тобто :

(4.5)

,

де Xkk-й вектор матриці пояснювальних змінних; Xjj-й вектор цієї матриці пояснювальних змінних X, .

Перша умова, здавалося б, є очевидною. Адже коли математичне сподівання залишків не дорівнює нулю, то це означає, що існує систематичний вплив на залежну змінну, а до модельної специфікації не введено всіх основних незалежних змінних. Якщо ця передумова не виконується, то йдеться про помилку специфікації.

зауважимо, що коли економетрична модель має вільний член, то майже завжди за рахунок його значення можна скоригувати рівняння так, щоб математичне сподівання залишків дорівнювало нулю. Отже, для таких моделей перша умова практично виконуватиметься завжди.

Друга умова передбачає наявність сталої дисперсії залишків. Цю властивість називають гомоскедастичністю. Проте вона може виконуватись лише тоді, коли залишки u є помилками вимірювання. Якщо залишки акумулюють загальний вплив змінних, які не враховані в моделі, то звичайно дисперсія залишків не може бути сталою величиною, вона змінюється для окремих груп спостережень. У такому разі йдеться про явище гетероскедастичності, яке впливає на методи оцінювання параметрів.

Третя умова передбачає незалежність між залишками і пояснювальними змінними, яка порушується насамперед тоді, коли економетрична модель будується на базі одночасових структурних рівнянь або має лагові змінні. Тоді для оцінювання параметрів моделі використовуються, як правило, дво- або трикроковий метод найменших квадратів.

Четверта умова означає, що всі пояснювальні змінні, які входять до економетричної моделі, мають бути незалежними між собою. Проте очевидно, що в економіці дуже важко вирізнити такий масив незалежних (пояснювальних) змінних, які були б зовсім не пов'язані між собою. Тоді щоразу необхідно з'ясовувати, чи не впливатиме залежність пояснювальних змінних на оцінку параметрів моделі.

Це явище називають мультиколінеарністю змінних, що призводить до ненадійності оцінки параметрів моделі, робить їх чутливими до вибраної специфікації моделі та до конкретного набору даних. Знижується рівень довіри до результатів верифікації моделей з допомогою 1МНК.Отже, це явище з усіх точок зору є дуже небажаним. Але воно досить поширене. Далі розглянемо методи виявлення мультиколінеарності і способи її врахування з допомогою специфікації моделі чи спеціальних методів оцінювання параметрів.

Оператор оцінювання 1МНК

Скористаємося моделлю (4.1), для якої виконуються умови (4.2)–(4.5), щоб оцінити параметри методом 1МНК.

Рівняння (4.1) подамо у вигляді: . Тоді суму квадратів залишків u можна записати так:

Продиференціюємо цю умову за А і прирівняємо похідні до нуля:

або

(4.6)

Тут — матриця, транспонована до матриці незалежних змінних X.

Звідси

(4.7)

Рівняння (4.6) дає матричну форму запису системи нормальних рівнянь, а формула (4.7) показує, що значення вектора А є розв'язком системи таких рівнянь.

Формули (4.6) і (4.7) можна дістати й інакше.

Так, помноживши рівняння (4.1) зліва спочатку на , а потім на матрицю , дістанемо:

Оскільки то справджується рівність

.

Згідно з (4.4), коли , , отже,

(4.7)

Неважко показати, що оцінки , обчислені за (4.7), мінімізують суму квадратів залишків u. При цьому значення вектору є розв'язком так званої системи нормальних рівнянь

.

Якщо незалежні змінні в матриці X взяті як відхилення кожного значення від свого середнього, то матрицю називають матрицею моментів.

Числа, що розміщені на її головній діагоналі, характеризують величину дисперсій незалежних змінних, інші елементи відповідають взаємним коваріаціям.Отже, структура матриці моментів відбиває зв'язки між незалежними змінними. Чим ближчі показники коваріацій до величини дисперсій, тим ближчий визначник матриці до нуля і тим гірші оцінки параметрів . Далі буде показано, що стандартні помилки параметрів прямо пропорційні до значень, розміщених на головній діагоналі матриці .

Розглянемо приклад оцінювання параметрів моделі 1МНК.

Таблиця 4.1.

№ п/п

Витрати на харчування y

Загальні витрати x1

Розмір сім'ї x2

1

22

45

1,5

2

34

75

1,6

3

50

125

1,9

4

67

223

1,8

5

47

92

3,4

6

66

146

3,6

7

81

227

3,4

8

106

358

3,5

9

70

135

5,5

10

95

218

5,4

11

119

331

5,4

12

147

490

5,3

13

93

175

8,5

14

133

305

8,3

15

169

468

8,1

16

197

749

7,3

Приклад 4.1. Оцінити параметри економетричної моделі, що характеризує залежність між тижневими витратами на харчування, загальними витратами та розміром сім'ї. Вихідні дані наведені в табл. 4.1.

Розв'язання. Запишемо економетричну модель:

де y, — відповідно фактичні та розрахункові значення тижневих витрат на харчування за моделлю; x1 — загальні витрати; x2 — розмір сім'ї; u — залишки; , , — оцінка параметрів моделі.

Оператор оцінювання параметрів моделі за 1МНК має вигляд

де ;

— матриця, транспонована до матриці X.

Матриця X крім двох векторів незалежних змінних містить вектор одиниць. Він дописується в цій матриці ліворуч тоді, коли економетрична модель має вільний член. не дописуючи такого вектора одиниць, вільний член можна обчислити, скориставшись рівністю:

де — середнє значення залежної змінної; , — середні значення незалежних змінних і .

Згідно з оператором оцінювання знайдемо:

1)

2)

3) ;

4)

Отже, економетрична модель має вигляд

Знайдені методом 1МНК оцінки параметрів такі: = 8,8; = 0,2; = 6,97, тобто

.

Отже, коли за всіх однакових умов незалежна змінна (загальні витрати) збільшується (зменшується) на одиницю, то залежна змінна (оцінка витрат на харчування) також збільшується (зменшується) на 0,2 одиниць. Якщо за інших незміннних умов незалежна змінна (розмір сім'ї) збільшується (зменшується) на одиницю, то залежна змінна (оцінка витрат на харчування) також збільшується (зменшується) на 6,97 одиниць. Якщо значення двох незалежних змінних дорівнює нулю, то значення дорівнювє = 8,8.

Loading...

 
 

Цікаве