WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаХімія → Фізико-хімічні методи аналізу. рефрактометрія. спектральний аналіз - Курсова робота

Фізико-хімічні методи аналізу. рефрактометрія. спектральний аналіз - Курсова робота

стану, збуджені в такий стан атоми іонізуються з виходом іонів, близьким до одиниці. При цьому зріз іонізіції атома з проміжного стану визначається зрізом його резонансного збудження в рідбергівський стан. Цей зріз на декілька порядків перевищує зріз нерезонансної іонізації в континіум. Збудження атома в рідбергівський стан можна здійснювати в дві або три ступені випромінюванням імпульсних лазерів на барвниках, що синхронізовані один з одним. Обрання схеми збудження залежить відконкретного атома.
3.Іонізація через автоіонізаційний стан.
Ще однією можливістю підвищення зрізу фотоіонізації атома є збудження на останній стадії в автоіонізаційний стан. Автоіонізаційний стан (АС)- це стани дискретного спектра, зумовлені збудженням внутрішніх електронів атома і що лежать вище границі іонізації атома, тобто в континіумі. Для багатоелектронних атомів такі стани можуть бути достатньо вузькими, і зріз такого автоіонізаційного перехода може на декілька порядків перевищувати зріз нерезонансної фотоіонізації. З іншого боку, навіть при досить малій ширині автоіонізаційного стану, близько ?0,01 см-1 , час його життя по відношенню до розпаду в контініум складає наносекунди. Відповідно, при збудженні такого стану лазерним імпульсом з типової тривалості 10-8 секунд буде проходити його ефективне спустошення на протязі лазерного імпульсу. Це забезпечує досягнення граничного абсолютного виходу іонізації ?іон =1.
Аналіз біологічних об'єктів.
Виявлення "слідових" кількостей металів в біологічних об'єктах є на сьогодні однією з актуальних аналітичних задач, важливих як для фармації так і медицини.
Біологічні об'єкти являють собою предмет особливого інтересу для застосування фотоіонізуючого метода, так як дозволяють виявити його важливу якість - нечутливість до інших елементів, крім того що аналізується. Це означає, що не треба ніякого попереднього розділення проб. Це було доведено експерементами по фотоіонізаційному виявленню залишків Al в крові. Обрання алюмінію пов'язано не лише легкістю його детектування, але й з тим, що він є одним з елементів, що цікавить токсикологію. До цього часу залишається не з'ясованою роль цого елемента в метаболізмі живих організмів.
Аналітича процедура прямого виявлення Al в крові полягала в наступному: кров в звичайному стані об'ємом 40 мкл вносили до тигелю, що являв собою танталовий стаканчик, та висушували на повітрі пи температурі 90-100?С на протязі 3-5 хвилин. Процес озоленння і атомізації сухого залишка проводилось в вакуумній камері. При проведенні цих процесів важливо вибрати такий режим нагрівання тигля, щоб озолення не призводило до суттєвого погіршення вакуума до 10-4 Тор. Водночас цей процес повинен проходити достатньо швидко, щоб не призвести до термічного випарення залишку без атомізації. При досліді температура тигля при озоленні підвищувалась до 1500?С в п'ять етапів на протязі 10 хвилин.
Повний сигнал алюмінія для досліджуваної проби визначався сумарною "селективною" площею (різниця між повним та фоновим сигналом) під кривою сигнала . Відповідаючі такому сигналу значення концентрації алюмінія визначали по градуювальній характеристиці, побудованій для водяних розчинів AlCl3 . Правомірність такої калібровки була перевірена шляхом добавок. При цьму в тигель вводилося 40 мкл крові і 40 мкл розчину AlCl3 з вмістом Al 100 мкг/л . Отриманий від такої суміші сигнал алюмінія в межах похибки вимірів (близько 10%) виявився рівним сумі сигналів від компонентів при незалежному їх аналізі. Цим було доведено відвутність впливу матриці крові на вихід алюмінія при термічній атомізації в вакуумі. Результати вимірів вмісту алюмінія в пяти зразках крові лежать в межах 230+_50мкг/л.
ТАБЛИЦЯ 1
Елемент Матриця Концентрація елемента в матриці % Межа виявлення, в ат.%
Yb Водний розчин YbCl3 5 ?10-7 2 ?10-9
Na Кристал CdS 2 ? 10-6 2 ? 10-10
Кристал Ge 2 ? 10-8 5 ? 10-9
Al Кристал Ge 2 ? 10-7 10-9
Водний розчин AlCl3 2 ? 10-7 2 ? 10-10
Морська вода 2 ? 10-7 10-7
Кров 3 ? 10-5 2 ? 10-7
B Кристал Ge 2 ? 10-7 5 ? 10-9
Ru Морська вода (1-3)? 10-10 3 ? 10-12
Тверда порода 10-4 - 10-9 10-10
В таблиці 1 приведені результати прямого виявлення методом лазерної фотоіонізаційної спектроскопії в вакуумі ряду елементів в різних речовинах. В неоптимізованих експерементальних умовах досягнуті результати, що є граничними для найбільш чутливих аналітичних методів.
Таблиця 2
Метод Межа визначення елемента, в %(водні розч.) Експерементальна межа визначення в матриці, в % Селективність по елементам
Атомно-абсорбційна спектрометрія 10-4 -10-9 10-4 -10-7 Середня
Іскрова мас-спектрометрія 10-5 - 10-8 10-5 - 10-7 Висока
Нейтронно-активаційний аналіз
10-5 - 10-9 10-5 - 10-9 Середня
Лазерна флуорисцентна спектрометрія 10-6 - 10-11 10-5 - 10-8 Висока
Лазерна ступінчата фотометрія 10-11 - 10-14 10-8 - 10-12 Дуже висока
Для метода лазерної фотоіонізаційної спектроскопії є також резерви досягнення меж визначення на один- два порядка шляхом вдосконалення конструкції атомізатора, підвищення ефективності та селективності лазерної фотоіонізації, позбавлення від неселективного іонного фону та інше.
Тобто знайдено новий універсальний характер метода фотоіонізаційної спектроскопії в поєднанні з вакуумною термічною атомізацією речовини, що відкрив широкі перспективи використання його як нового аналітичного метода. Крім того, лазерна ступінчата фотоіонізація атомів в вакуумі має перспективи комбінації з іншими способами атомізації, припускається пряме поєднання з масс-спектрометром і різними способоми виділення селективних іонів.
Переваги розглянутого метода - чутливість реєстрації на рівні одиничних атомів в об'ємі взаємодії з лазерним випромінюванням, можливість прямого аналіза об'єктів в їх звичайному стані, винятковість неконтрольованих домішок шляхом атомізації речовини в вакуумі, можливість виділення селективного корисного сигналу на рівні фона в одному вимірі і роздільної реєстрації поверхневих і об'ємних домішок в твердих зразках- дозволяють використовувати його для аналіза слідів більшості елементів практично в якій завгодно пробі, що дожволить визначати наявність речовин в лікарських формах в максимально низьких кількостях.
ВИКОРИСТАНА ЛІТЕРАТУРА:
1. Е.Т. Оганесян. "Посібник з хімії поступающим у вузи". Москва. 1992 р. .
2. Л.С. Гузей, В.Н. Кузнєцов. "Новий довідник по хімії". Москва. 1998 р. .
3. Н.А. Тюкавкина, Ю.И. Бауков. "Біоорганічна хімія". Москва. 1985 р. .
4. Б.Н. Степаненко. "Органічна хімія". Москва. 1980р. З-253.
5. П.Л. Сенов "Руководство к лабораторным занятиям по фармацевтической химии".
6. Н.П Максютіна , Ф.Е. Каган "Методи ідентифікації лікарських препаратів."
7. Дані інтернету.
Loading...

 
 

Цікаве