WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаПідприємництво → Моделювання економічного ризику на базі концепції теорії гри - Реферат

Моделювання економічного ризику на базі концепції теорії гри - Реферат

де – величина коефіцієнта варіації для рішення sk.

5) Критерій мінімального коефіцієнта семіваріації. Якщо F = , то оптимальним слід вважати рішення

де – величина коефіцієнта семіваріації для рішення sk.

Прийняття рішень у полі другої інформаційної ситуації

Зазначимо, що у цій ситуації висувається гіпотеза щодо класу функцій, якому належить цей (невідомий) розподіл, на основі статистичної інформації здійснюється перевірка цієї гіпотези і при наявності позитивного результату на основі ідентифікованого розподілу будується вектор , який розглядається як прийнятна оцінка розподілу ймовірності станів економічного середовища. Після цього, стосовно прийняття рішень, можна скористатись критеріями, що розглядались у випадку першої інформаційної ситуації.

Прийняття рішень у полі третьої інформаційної ситуації

Необхідно відмітити, що для цієї інформаційної ситуації характерним є те, що апріорі закон розподілу ймовірностей станів економічного середовища невідомий, але відомі деякі співвідношення пріоритету стосовно елементів множини станів економічного середовища. А тому суттєвою проблемою у цій ситуації є генерація гіпотез (допущень), на основі яких та наявної інформації здійснювалось би оцінювання розподілу ймовірностей станів економічного середовища.

Перша формула Фішберна. У випадку, коли на основі наявної (можливо й суб'єктивної) інформації можна побудувати ряд пріоритету щодо станів економічного середовища, тобто вважаючи, що Фішберн [7] висунув гіпотезу, що оцінки апріорних ймовірностей можна будувати у вигляді спадної арифметичної прогресії. Він показав, що ці оцінки можна обчислювати за формулою:

.

Друга формула Фішберна. У випадку, коли апріорі можна стверджувати, що мають місце співвідношення пріоритету щодо станів економічного середовища

..........................................................

,

згідно з гіпотезою Фішберна 7 оцінки , апріорних ймовірностей можна вибрати у вигляді спадної геометричної прогресії:

.

Наступним етапом, після оцінювання розподілу ймовірності станів економічного середовища згідно з однією із формул Фішберна, є прийняття рішення з використанням критеріїв, розглянутих у випадку першої інформаційної ситуації.

Прийняття рішень у полі четвертої інформаційної ситуації

Для цієї інформаційної ситуації характерним є повне незнання закону розподілу ймовірностей станів економічного середовища. А тому вибір розподілу ймовірності станів економічного середовища, як і у двох попередніх випадках повинен базуватись на певних гіпотезах. У якості однієї з таких гіпотез можна використати принцип Бернуллі-Лапласа (принцип недостатніх підстав), згідно з яким можливі стани економічного середовища розглядаються як рівноімовірні випадкові події, якщо відсутня інформація про умови, за яких кожен стан може відбутися. Тобто вважати, що , .

Прийняття рішень у полі п'ятої інформаційної ситуації

Ця інформаційна ситуація характеризується антагоністичними інтересами СПР та економічного середовища, тобто має місце конфлікт між ними. При цьому економічне середовище є активним, тобто таким, що активно протидіє досягненню найбільшої ефективності рішень, які приймаються СПР. Це досягається шляхом вибору таких своїх станів, які зводять до мінімуму ефективність процесу управління.

Необхідно зазначити, що основною стратегією для СПР у полі п'ятої інформаційної ситуації є забезпечення собі гарантованих рівнів значень функціоналу оцінювання.

1)Критерій Вальда. Коли F = F+, то згідно з критерієм Вальда оптимальне рішення вибирається за принципом maxmin (максиміну).

.

У випадку, коли , оптимальне рішення знаходиться згідно з принципом minmax (мінімаксу), а саме:

.

Слід зазначити, що критерій Вальда надзвичайно консервативний, тобто безризиковий у такій ситуації, де недоцільно ризикувати.

2) Критерій домінуючого результату. Коли F = F, то згідно з критерієм домінуючого результату оптимальне рішення забезпечується maxmax (максимаксною) стратегією:

.

У випадку, коли оптимальне рішення забезпечується minmin (мінмінною) стратегією:

.

В основному цей критерій використовується як складова частина в процесі побудови складних моделей прийняття багатоцільових рішень для імітації найсприятливіших ситуацій (наприклад, в критерії Гурвіца, що використовується в полі шостої інформаційної ситуації).

3) Критерій мінімального ризику Севіджа. Цей критерій є одним з основних критеріїв, що відповідає принципу мінімаксу. Перш за все необхідно перейти від функціоналу оцінювання F до матриці ризику R. Тоді згідно з критерієм Севіджем оптимальним слід вважати рішення:

.

Прийняття рішень у полі шостої інформаційної ситуації

Нагадаємо, що ця ситуація характеризується наявністю чинників, що зумовлюють "проміжну" між п'ятьма вищерозглянутими інформаційними ситуаціями поведінку економічного середовища щодо вибору своїх станів.

Класичними прикладами критеріїв прийняття компромісних рішень в полі шостої інформаційної ситуації критерій Гурвіца, модифіковані критерії та критерій Ходжеса-Лемана [1, 2, 3, 5, 6].

1) Критерій Гурвіца. Гурвіц запропонував використовувати зважену комбінацію найкращого та найгіршого. Такий підхід до вибору рішень відомий як критерій показника песимізму-оптимізму. Особливістю цього критерію є те, що в ньому передбачається не повний, а лише частковий антагонізм середовища та СПР.

Згідно з критерієм Гурвіца у випадку, коли F = F+, оптимальним є рішення

.

Величину називають -показником Гурвіца для рішення sk S.

У випадку, коли , оптимальним є рішення

.

Параметр  в обох випадках можна інтерпретувати як коефіцієнт несхильності до ризику.

2) Модифіковані критерії. Згідно з модифікованими критеріями у випадку, коли F = F, оптимальним є рішення

,

або ж у випадку, коли F = F, рішення

,

де ; , а в якості величини можна використати середньоквадратичне , семіквадратичне відхилення тощо. Параметр , який використовується у зазначених вище критеріях, можна трактувати як коефіцієнт несхильності СПР до ризику.

3) Критерій Ходжеса-Лемана. Ходжес та Леман стоять на тій точці зору, що в практиці прийняття рішень в умовах невизначеності інформація про стан ЕС знаходиться між повним незнанням та точним знанням апріорного розподілу. Критерій Ходжеса-Лемана дає змогу використовувати всю інформацію, що її має суб'єкт управління, але в той же час забезпечує заданий рівень гарантії у випадку, коли ця інформація неточна. У деякому плані критерій Ходжеса-Лемана являє собою "суміш" критеріїв Байєса та Вальда.

Згідно з критерієм Ходжеса-Лемана у випадку, коли F = F+, оптимальним є рішення

.

Якщо ж , то оптимальним рішенням є

.

Як і раніше, параметр [0,1], і його можна інтерпретувати як коефіцієнт несхильності до ризику.

Прийняття рішень, оптимальних за Парето

Необхідно відмітити, що згідно з Парето рішення sk вважається не гіршим від рішення sl (позначається:), якщо для всіх елементів відповідних їм векторів мають місце оцінки якщо F = Fчи , якщо F=F.

Якщо хоча б для однієї компоненти вектора має місце строга нерівність (F = F+) чи (F = F), то рішення sk вважається кращим за рішення sl (записується ).

Рішення є оптимальним за Парето, якщо в множині S не знайдеться рішення, краще від .

Необхідно звернути увагу на те, що на практиці ситуація, коли рішення що приймається, буде оптимальним за Парето, є досить рідкісним явищем. А тому у разі відсутності рішення, оптимального за Парето, утворюють множину непокращуваних за Парето рішень. (Нагадаємо, що рішення називається покращуваним, якщо існує рішення таке, що ). Тоді оптимальне рішення доцільно шукати серед елементів множини Парето SП, використовуючи при цьому критерії, адекватні ситуації прийняття рішень.

1 "Пасивне"економічне середовище характеризують перша, друга, третя та четверта інформаційні ситуації, оскільки згідно з наведеною вище класифікацією стани економічного середовища в полі цих інформаційних ситуацій реалізуються відповідно до заданого або гіпотетичного закону розподілу ймовірностей.

2 Символ ":" в математичних викладках є еквівалентом слів "для якого".

Loading...

 
 

Цікаве