WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаБіологія, Зоологія, Аграрна наука → Дезоксирибонуклеїнова кислота (ДНК) (науковий реферат) - Реферат

Дезоксирибонуклеїнова кислота (ДНК) (науковий реферат) - Реферат

кольором) взаємодіють з кислотними фосфатними групами ДНК (показані червоним кольором).
Взаємодія фактора транскрипції STAT3 з ДНК (показана у вигляді синьої спіралі)
Всі функції ДНК залежать від її взаємодії з білками. Взаємодії можуть бути як неспецифічними, коли білок приєднується до будь-якої молекули ДНК, або залежати від наявності особливої послідовності. Ферменти також можуть взаємодіяти з ДНК. Найважливіші з них - полімерази, що копіюють послідовність основ ДНК на РНК у процесі транскрипції, а також на нову ДНК при синтезі нового ланцюжка - реплікації.
Структурні і регуляторні білки
Добре вивченими прикладами взаємодії білків і ДНК,незалежної від нуклеотидної послідовності, є взаємодія із структурними білками. У клітинах ДНК зв'язана з цими білками, утворюючи компактну структуру - хроматин. У випадку еукаріотів та багатьох архей хроматин утворюється за допомогою невеликих лужних білків - гістонів. У решти архей та бактерій ДНК менш щільно упакована за допомогою ряду інших білків, хоча серед них і знайдені гомологічні гістонам білки[67][68][69][70]. Гістони формують дископодібні білкові структури - нуклеосоми, навколо кожної з яких вміщається два обороти спіралі ДНК. Неспецифічні зв'язки між гістонами і ДНК утворюються за рахунок іонних зв'язків лужних амінокислот гістонів і кислотних залишків цукрофосфатного остову ДНК[71]. Хімічні модифікації цих амінокислот включають метилювання, фосфорилювання і ацетилювання[72]. Ці хімічні модифікації змінюють силу взаємодії між ДНК і гістонами, впливаючи на доступність специфічних послідовностей для факторів транскрипції і змінюючи швидкість транскрипції[73].Інші білки у складі хроматіну, які приєднуються до неспецифічних послідовностей, - білки з високою рухливістю в гелях, що асоціюють переважно із зігнутою ДНК[74]. Ці білки важливі для утворення в хроматині структур вищого порядку[75].
Фактор транскрипції лямбда-репресор, зв'язаний з ДНК[76]
Особлива група білків, що приєднуються до ДНК, - білки, які асоціюють з одноланцюжковою ДНК. Найкраще охарактеризований білок цієї групи у людини - реплікаційний білок А, без якого неможливе протікання більшості процесів, де розплітається подвійна спіраль, включаючи реплікацію, рекомбінацію і репарацію ДНК. Білки цієї групи стабілізують одноланцюжкову ДНК і запобігають формуванню стебел-петель або деградації ДНК нуклеазами[77].
Водночас інші білки розпізнають специфічні послідовності й приєднуються до них. Найбільш вивчена група таких білків - різні класи факторів транскрипції, тобто білки, що регулюють транскрипцію. Кожен з цих білків розпознає свою послідовність, часто в промоторі, й активує або пригнічує транскрипцію гену. Це відбувається при асоціації факторів транскрипції з РНК-полімеразою або безпосередньо, або через білки-посередники. Полімераза асоціює спочатку з білками, а потім починає транскрипцію[78]. В інших випадках фактори транскрипції можуть приєднуватися до ферментів, які модифікують гістони, що знаходяться на промоторах, і, таким чином, змінюють доступність ДНК для полімераз[79].
Оскільки специфічні послідовності зустрічаються в багатьох місцях геному, зміни в активності одного типу факторів транскрипції можуть змінити активність тисяч генів[80]. Відповідно, ці білки часто регулюються в процесах відповіді на зміни в навколишньому середовищі, розвитку організму і диференціацію клітин. Специфічність взаємодії факторів транскрипції з ДНК забезпечується численними контактами між амінокислотами і основами ДНК, що дозволяє їм "читати" послідовність ДНК. Більшість контактів з основами відбуваються в головній борозенці, де основи доступніші[81].
Ферменти, що модифікують ДНК
Структура Топоізомерази II[82]
Топоізомерази і гелікази
Докладніше у статтях: Топоізомерази та Гелікази
У клітині ДНК перебуває в суперскрученому стані, що дозволяє їй досягти компактнішої організації. Для протікання багатьох процесів життєдіяльності ДНК повинна бути розкручена, що виконується двома групами білків - топоізомеразами і геліказами.
Топоізомерази - ферменти, які мають як нуклеазну, так і лігазну активності. Ці білки змінюють топологію, зокрема ступінь суперскрученості ДНК. Деякі з цих ферментів розрізають подвійну спіраль ДНК і дозволяють обертатися одному з ланцюжків, тим самим зменшуючи рівень суперскрученості, після чого фермент заклеює розрив[34]. Інші ферменти можуть розрізати один з ланцюжків і проводити другий ланцюжок через розрив, а потім лігувати розрив в першому ланцюжку[83]. Топоізомерази необхідні в багатьох процесах, пов'язаних з ДНК, таких як реплікація і транкрипція[35].
Гелікази - білки, що належать до молекулярних моторів. Вони використовують хімічну енергію нуклеозидтрифосфатів, найчастіше АТФ, для розриву водневих зв'язків між основами, розкручуючи подвійну спіраль на окремі ланцюжки[84]. Ці ферменти важливі для більшості процесів, де білкам необхідний доступ до основ ДНК.
Нуклеази і лігази
ДНК-лігаза I (кільцеподібна структура, що складається з кількох однакових молекул білку, показаних різними кольорами), лігує пошкоджений ланцюжок ДНК.
У різних процесах, що відбуваються в клітині, наприклад, рекомбінації і репарації беруть участь ферменти, здатні розрізати і відновлювати цілісність ланцюжків ДНК. Ферменти, що розрізають ДНК, носять назву нуклеаз. Нуклеази, які гідролізують нуклеотиди на кінцях молекули ДНК, називаються екзонуклеазами, а нуклеази, що розрізають ДНК усередині ланцюга - ендонуклеазами. Нуклеази, що найчастіше використовуються в молекулярній біології і генній інженерії входять до класу рестриктаз, які розрізають ДНК біля специфічних послідовностей. Наприклад, фермент EcoRV (рестрикційний фермент № 5 бактерії E. coli) розпізнає шестинуклеотидну послідовність 5'-GAT|ATC-3' й розрізає ДНК у місці, вказаному вертикальною лінією. У природі ці ферменти захищають бактерії від зараження бактеріофагами, розрізаючи ДНК фага, коли вона вводиться в клітину бактерії. Власна ДНК бектерії захищена від рестриктаз за допомогою метилювання. У цьому випадку нуклеази - частина рестрикційно-модифікаційної системи[85].
ДНК-лігази зшивають цукрофосфатні остови молекул ДНК, використовуючи енергію АТФ. Вони особливо важливі в процесах реплікації ланцюжка, що запізнюється, з'єднуючи між собою фрагменти Окадзакі. Крім того вони використовуються в репарації ДНК і гомологічній рекомбінації[86]. У лабораторних дослідженнях лігази широко використовуються в клонуванні і фінґерпринтингу.
Полімерази
Інша важлива для метаболізму ДНК група ферментів синтезує ланцюжки полінуклеотидів з нуклеозидтрифосфатів, це - полімерази. Вони додають нуклеотиди до 3'-гідроксильної групи попереднього нуклеотиду в ланцюжку ДНК, тому всі полімерази працюють у напрямі 5' -> 3' [87]. У активному центрі цих ферментів
Loading...

 
 

Цікаве