WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаБіологія, Зоологія, Аграрна наука → Значення бактерій у природі та господарській діяльності. Загальна характеристика нижчих рослин – водоростей. Особливості біології зелених водоростей - Реферат

Значення бактерій у природі та господарській діяльності. Загальна характеристика нижчих рослин – водоростей. Особливості біології зелених водоростей - Реферат


КОНТРОЛЬНА РОБОТА
на тему:
"Значення бактерій у природі та господарській діяльності.
Загальна характеристика нижчих рослин - водоростей. Особливості біології зелених водоростей. Особливості біології діатомових червоних та бурих водоростей. Значення водоростей у природі та для людини
ПЛАН
1. Значення бактерій у природі та господарській діяльності
2. Загальна характеристика нижчих рослин - водоростей
3. Особливості біології зелених водоростей. Особливості біології діатомових червоних та бурих водоростей.
Значення водоростей у природі та для людини
Список використаної літератури
1. Значення бактерій у природі та господарській діяльності
Важлива роль багатьох видів бактерій зумовлена їх участю у процесах гниття та різних типів бродіння, тобто у виконанні санітарної ролі на Землі. Бактерії також мають велике значення у колообігу вуглецю, кисню, водню, азоту, фосфору, сірки, кальцію та інших елементів.
Багато видів.бактерій сприяють активній фіксації атмосферного азоту і переводять його в органічну форму, що підвищує родючість грунтів. Особливо велике значення мають бактерії, що розкладають целюлозу й пектинові речовини, які є основним джерелом вуглецю для життєдіяльності мікроорганізмів грунту.
Сульфатредукуючі бактерії беруть участь в утворенні нафти і сірководню в лікувальних грязях, грунтах і морях.
Так, насичений сірководнем шар води в Чорному морі є результатом життєдіяльності сульфатредукуючих бактерій. Діяльність цих бактерій у грунтах призводить до утворення соди і содового засолювання грунтів.
Сульфатредукуючі бактерії переводять поживні речовини в грунтах рисових плантацій у форму, доступну для коренів цієї культури. Ці бактерії можуть спричинювати корозію металевих підземних і підводних споруд.
Завдяки життєдіяльності бактерій грунт звільняється від багатьох шкідливих продуктів і насичується цінними поживними речовинами. Бактерійні препарати успішно використовують для боротьби з багатьма видами комахшкідників (кукурудзяним метеликом та ін.).
Багато видів бактерій використовують у різних галузях промисловості для добування ацетону, етилового й бутилового спиртів, оцтової кислоти, ферментів, гормонів, вітамінів, антибіотиків, білкововітамінних препаратів тощо.
Завдяки успіхам генної інженерії нині з'явилась можливість широко використовувати кишкову паличку для вироблення інсуліну, інтерферону, а водневі бактерії - для одержання кормового й харчового білків. Без бактерій неможливі процеси дублення шкіри, сушіння листків тютюну, виготовлення шовку, каучуку, оброблення какао, кави, мочіння конопель, льону та інших лубоволокнистих рослин, квашення капусти, очищення води, вилужування металів тощо.
Вивчення генетики бактерій та інших мікроорганізмів має дуже важливе як теоретичне, так і практичне значення для спрямованої селекції високопродуктивних штамів, які останнім часом почали широко застосовуватися в різних галузях народного господарства. Використання в селекції мікроорганізмів методів природного добору, індукованого мутагенезу, популяційної мінливості, клонування, гібридизації соматичних клітин тощо дало можливість одержати високопродуктивні штами мікроорганізмів. Останні знайшли широке застосування в мікробіологічній промисловості для виробництва кормового білка, амінокислот, ферментів, вітамінів, антибіотиків, бактеріальних добрив, засобів захисту рослин, анатоксинів, лікувально-профілактичних препаратів - вакцин, інтерферонів, гормонів, інтер-лейкінів та ін. Наприклад, з індукованих мутантів із наступною селекцією їх було одержано штами - продуценти амінокислот, продуктивність яких у 100 разів вища від такої у вихідних штамів. Продуцент лізину дає в 300-400 разів більший вихід цієї незамінної амінокислоти, ніж природний штам.
Багатонадійні перспективи для сільського господарства, біології та медицини й інших галузей народного господарства відкриваються у зв'язку з розробкою і вдосконаленням методів генної і клітинної інженерії, за допомогою яких експериментальне доведена можливість передачі не тільки природних генів, а й штучно синтезованих, які кодують синтез різноманітних біологічно активних сполук. Наприклад, ще в перших дослідах з генної інженерії, проведених у 1973 p., було введено за допомогою фага в геном Е.соїі ген LIG, який контролює синтез лігази. Внаслідок цього вміст лігази в кліти-нах-реципієнтах збільшився в 500 разів. Тепер у клітини кишкової палички клоновані і функціонують гени інтерферонів, гормону росту, інсуліну та ін. За допомогою клонованих штамів Е.соїі одержують препарати інтерферону, інсуліну і соматотропіну.
Є також дані про те, що успішно функціонують клоновані у бактерії гени вірусів грипу, гепатиту В, герпесу, ген білка оболонки вірусу ящуру, що в найближчий час дозволить розробити технологію виробництва молекулярних вакцин без баластних білків.
Останнім часом інтенсивно вивчаються методи трансплантації генів за допомогою плазмід, які ще часто називають "генною інженерією в природі". Вони відіграють велику роль у передачі генетичного матеріалу між бактеріями, які належать навіть до віддалених філогенетичних груп. Плазміди є фактично каналом генетичної комунікації в бактеріальному світі. Наприклад, методами генної інженерії було зроблено пересадку гена nif з азотфіксуючої бактерії в неазотфіксуючу, і остання набула властивості фіксувати молекулярний азот. Тепер ведуться роботи з перенесення генів від бактерій до клітин вищих рослин.
В лабораторних умовах одержано рекомбінантні плазміди, які містять гени двох різних бактерій, бактерій і вірусів, бактерій і рослин, бактерій і тварин, бактерій і людини. Дуже важливим є те, що такі рекомбінантні плазмід й, інтродуковані в бактеріальні клітини, дали експресію.
Особливої ваги набувають нині методи одержання енергії та переробки відходів промисловості і сільського господарства з метою одержання цінних біопродуктів і захисту біосфери від забруднення за допомогою мікроорганізмів. Мікробіологічна наука і мікробіологічна індустрія можуть зробити помітний внесок у розв'язання енергетичних проблем, які пов'язані зі значним зменшенням запасів нафти і вугілля на нашій планеті.
Відомо, що поверхня Землі щорічно отримує таку кількість сонячної енергії, яка в тисячі разів перевищує рівень виробленої у світі енергії з паливних ресурсів, що видобуваються. Сучасне вирощування рослин використовує фотосинтез із ККД запасання фотосинтетичне активної радіації (ФАР) в урожаї на рівні 0,1-0,5 %. У XXI ст. інтенсифікація рослинництва має забезпечити ККД агрофітоценозів приблизно до 3-5 % ФАР. Мікроорганізми здатні трансформувати сонячну енергію в хімічну з ККД до 15-18 %, що свідчить про набагато вищу ефективність цього процесу в мікроорганізмів
Loading...

 
 

Цікаве