WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаБіологія, Зоологія, Аграрна наука → Стійкість до голодування і активність АДГ у Drosophila melanogaster із природних популяцій України - Курсова робота

Стійкість до голодування і активність АДГ у Drosophila melanogaster із природних популяцій України - Курсова робота

Варто також зазначити, що механізми фізіологічних реакцій на харчовий стрес зберігаються і закріплюються у особин усього тваринного світу (Tatar; 2003; Partridge et al., 2005; Arsham, Neufeld, 2006). Таким чином, дані щодо розуміння генетики і фізіології адаптації до голодування, отримані в експериментах на дрозофілі, можна застосовувати не лише до мух, а й до комах та деяких інших тварин взагалі.

Практично у всіх дослідженнях, що стосуються вивчення стійкості до голодування Drosophila melanogaster, мова йде про гостре голодування, тобто повне позбавлення їжі (Huey, 2004). Але в роботах деяких авторів показано, що мухи дрозофіли також дуже чутливі до нестачі води, адже існує досить тісний зв`язок між стійкістю до голодування та здатністю витримати нестачу вологи (Partridge, Piper, 2005). Виходячи із наведених даних автори рекомендують вносити воду у вигляді вологих пробок чи смужок фільтрувального паперу до середовища, де голодують мухи. Отже, цю рекомендацію варто враховувати при постановці експериментів.

Зазвичай тривалість життя особин за голодування визначають як час, що проходить до загибелі 50% (Lt 50) мух в умовах досліду. В залежності від генотипу та умов середовища, середній час виживання без корму коливається від 20 годин для самців і до більш ніж 50 годин для самок (Harshman , Shmidt, 1998; Harshmann, 1999; Baldal, 2005; Harbison, 2005).

Еволюційний взаємозв'язок між голодуванням та тривалістю життя був підтверджений деякими експериментами з використанням методів селекції. Дані відносно дрозофіл отримані головним чином в дослідженнях на Drosophila melanogaster. Досліджувані лабораторні лінії дрозофіли, відібрані за ознакою тривалості життя, за даними деяких авторів (Rose, Archer, 1996) демонстрували і відносно кращу стійкість до голодування. За даними інших авторів (Rose et al., 1992) в свою чергу, селекція на стійкість до голодування в умовах експерименту призводила до збільшення тривалості життя. В ході досліджень також було з'ясовано, що мутанти Drosophila melanogaster з великою тривалістю життя зазвичай є стійкими і до інших чинників стресу (Lin, Benzer, 1998).

Добре відомо, що гени всіх живих організмів кодують інформацію для синтезу білкових молекул, із яких створюються всі компоненти клітин живих організмів та які приймають участь у каталізі всіх біохімічних процесів. Фактично кожну біохімічну функцію чи елемент тіла у дрозофіли вдалося пов'язати із дією того чи іншого гена (Тоцький, 2002). Усестороннє розуміння еволюційних механізмів становлення стійкості до голодування потребує ідентифікації та характеристики генних локусів, що вносять вклад в спадкову мінливість цієї ознаки та лежать в основі її еволюційних змін. Мутації або ж маніпуляції з експресією генів, що посилюють витривалість до голоду, вказують на можливості її змін в штучних умовах, але досі залишається незрозумілим чи мають встановлені зміни місце у природі.

Певне розуміння генетичних аспектів, а саме успадковування та мінливість стійкості до голоду, може бути отримане шляхом аналізу схрещувань між стійкими та нестійкими генотипами. Вчені використали цей підхід для вивчення генетичної структури відмінностей між двома парами географічно віддалених популяцій дрозофіли із Південної Америки та Австралії. Цікавим виявилось те, що обидві статі мух у Південній Америці та самки дрозофіл у Австралії виявляли позитивні ефекти домінування по материнській лінії, тобто нащадки виявляли вищу стійкість до голодування, якщо ця ознака була високою у матері.

Разом із простим материнським ефектом були виявлені також парадоксальні результати, а саме: менш стійкі до голоду матері давали більш стійких нащадків обох статей. Причини виявлених закономірностей і досі залишаються невідомими.

Результати, отримані при картуванні генів кількісних ознак, а також дані тестування на кількісну комплементацію (Mackay, Fry, 1996) дозволили визначити шлях до ідентифікації специфічних локусів, що відповідають за неоднакову стійкість до голодування. Як випливало із попередніх даних, природний поліморфізм локусу десатурази-2 міг впливати на стійкість мух до голодування (Greenberg et al., 2003), але подальші експерименти (Coyne, Elwyn, 2006) не підтвердили це припущення. Використовуючи більш комплексний підхід, було ідентифіковано 13 локусів (6 із них мали статево-специфічний ефект), які вносять вклад в розбіжності щодо стійкості до голодування між двома лабораторними лініями мух. Ці локуси включають гени, що беруть участь в оогенезі (ген l(2)G270 впливає на розвиток яйцеклітини) та метаболізмі (гени, що регулюють розподіл жирів). Також були визначені гени, що впливають на харчову поведінку мух (наприклад, ген NaСР60Е).

Вченими також вивчалися зміни в експресії генів, викликані умовами голодування. Даний підхід не є досить інформативним щодо генетичної мінливості здатності витримати голод, але проливає світло на молекулярні механізми відповіді на харчовий стрес. При голодуванні гени, що задіяні в біосинтезі білків і гідролазній активності, мають тенденцію до неврегульованості та надлишкового синтезу. Таким чином організм намагається компенсувати нестачу поживних речовин і, як наслідок, пережити несприятливі умови голодування.

Відмінності в ході добору по стійкості до голодування можуть призводити до відмінностей за цією ознакою між популяціями. Докази таких відмінностей знайдені при вивченні великих географічно віддалених популяцій. Вченими було показано, що на Індійському півострові має місце негативна кореляція між стійкістю до голодування та географічною широтою для п'яти видів дрозофіли (включаючи і Drosophila melanogaster). Аналогічним чином, розподіл по довготі був недавно показаний для двох інших видів дрозофіли на Індійському півострові (Parkash, 2005). Навпаки, позитивна кореляція між досліджуваною ознакою та широтою у Drosophila melanogaster, була виявлена на сході Південної Америки (Schmidt, 2005). В той же час ніяких варіацій по даній ознаці не було виявлено у особин з Південної Америки та Східої Австралії. Таким чином, наведені дані свідчать про те, що залежність між стійкістю до голодування та географічною широтою підтверджується не завжди.

Аналізуючи дані літератури щодо стійкості до голодування особин популяції Drosophila melanogaster, можна відзначити, що за останні роки були проведені дослідження, спрямовані на розкриття молекулярних та фізіологічних механізмів відповіді на харчовий стрес. Існує думка, що дана ознака відтворює рівень адаптивної пластичності та являється частиною механізму виживання, який може частково піддаватися інсуліновій системі регуляції.

Що стосується розуміння екологічних аспектів витривалості до голодування, то і досі залишається багато питань відносно природного добору за цією ознакою.

Дрозофіла надає унікальну можливість для повноцінного розуміння та інтеграції різних аспектів еволюційної відповіді на харчовий стрес.

1.2 Активність алкогольдегідрогенази у Drosophila melanogaster

Механізми адаптації генотипів та популяцій до дії екологічних факторів є досить цікавими і тому інтенсивно вивчаються в багатьох лабораторіях. В даному контексті вважається доцільним вияснити роль ферменту алкгольдегідрогенази (АДГ) в життєдіяльності та адаптації у Drosophila melanogaster. Ген-ензимна система АДГ на протязі тривалого часу притягує увагу численних дослідників в різних областях генетики – від молекулярної до популяційної, завдяки відносно простій ідентифікації ферменту, значному поліморфізму і тій ключовій ролі, що АДГ відіграє в життєдіяльності дрозофіли (цей фермент допомагає здійснювати детоксикацію та утилізацію спирту, який являється важливим компонентом середовища існування плодової мушки).

Фермент АДГ (по класифікації ферментів – КФ 1. 1. 1. 1.) відноситься до класу оксидоредуктаз, об`єктом дії яких є група СН-ОН.

Ацетальдегід + НАДН + Н+ → етанол + НАД

Алкогольдегідрогеназа широко розповсюджена в природі. Алкогольдегідрогеназна активність притаманна різним клітинам всіх живих організмів.

Піридиновий нуклеотид в якості коферменту відіграє головну роль в реакції з усіма вивченими АДГ, при цьому фермент може окислювати не лише етанол, але й інші первинні та вторинні спирти [Діксон, 1982]. При перетворенні етилового спирту в ацетальдегід спостерігається впорядкована багатоточкова взаємодія в АДГ між ферментним білком, субстратом і коферментом.

Loading...

 
 

Цікаве