WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаБіологія, Зоологія, Аграрна наука → Поняття системи як наукового терміну - Курсова робота

Поняття системи як наукового терміну - Курсова робота

Поняття системи, як наукового терміна

У самому загальному й широкому змісті слова під системним дослідженням предметів і явищ навколишнього нас миру розуміють такий метод, при якому вони розглядаються як частини або елементи певного цілісного утворення. Ці частини або елементи, взаємодіючи один з одним, визначають нові, цілісні властивості системи, які відсутні в окремих її елементів. Однак це правило застосовано лише для характеристики систем, що складаються з однорідних частин і мають цілком певну структуру. Проте, на практиці нерідко до систем відносять сукупності різнорідних об'єктів, об'єднаних в одне ціле для досягнення певної мети.

Головне, що визначає систему, - це взаємозв'язок і взаємодія частин у рамках цілого. Якщо така взаємодія існує, то припустимо говорити про систему, хоча ступінь взаємодії її частин може бути різної. Варто також звернути увагу на те, що кожний окремий об'єкт, предмет або явище можна розглядати як певну цілісність, що складається із частин, і досліджувати як систему.

Поняття системи, як і системний метод у цілому, формувалося поступово, у міру того як наука й практика опановували різними типами, видами й формами цілісних об'єднань предметів і явищ. Тепер нам має бути докладніше ознайомитися з різними спробами уточнення як самого поняття системи, так і становлення системного методу.

Специфіка системного методу дослідження

Наведене вище інтуїтивне визначення системи досить для того, щоб відрізняти системи від таких сукупностей предметів і явищ, які системами не є. У нашій літературі для назви останніх не існує спеціального терміна. Тому ми будемо позначати їх запозиченим з англомовної літератури терміном агрегати. Купу каменів навряд чи хто-небудь назве системою, у той час як фізичне тіло, що складається з великої кількості взаємодіючих молекул, або хімічна сполука, утворена з декількох елементів, а тим більше живий організм, популяцію, вид і інші співтовариства живих істот усякий буде інтуїтивно вважати системою. Чим ми керуємося при віднесенні одних сукупностей до систем, а інших - до агрегатів? Очевидно, що в першому випадку ми зауважуємо певну цілісність, єдність системи елементів, у другому випадку така єдність і взаємозв'язок відсутні й установити їх важко, тому мова повинна йти про просту сукупність, або агрегаті, елементів. Таким чином, для системного підходу характерно саме цілісний розгляд, установлення взаємодії складових частин або елементів сукупності, незвідність властивостей цілого до властивостей частин. Так, наприклад, довжина тіла, що складає з декількох частин, так само як і його вага, можуть бути знайдені підсумовуванням відповідно довжини й ваг його частин. На відміну від цього температуру води, отриману шляхом змішання різних її обсягів, нагрітих у різному ступені, не можна обчислити таким способом. Нерідко тому говорять, що якщо властивості простих сукупностей адитивні, тобто підсумуються або складаються із властивостей або величин їхніх частин, то властивості систем як цілісних утворень неадитивні.

Треба, однак, відзначити, що розходження між системами й агрегатами, або простими сукупностями, має неабсолютний, а відносний характер і залежить від того, як підходять до дослідженню сукупності. Адже навіть купу каменів можна розглядати як деяку систему, елементи якої взаємодіють за законом всесвітнього тяжіння. Проте, тут ми не виявляємо виникнення нових цілісних властивостей, які властиві справжнім системам. Ця відмітна ознака систем, що полягає в наявності в них нових системних властивостей, що виникають внаслідок взаємодії тридцятилітніх їхніх частин або елементів, завжди варто мати на увазі при їхньому визначенні.

В останні роки вживало чимало спроб дати логічне визначення поняття системи. Оскільки в логіку типовим способом є визначення через найближчий рід і видову відмінність, остільки як родове поняття звичайно вибиралися найбільш загальні поняття математики й навіть філософії. У сучасній математиці таким поняттям уважається поняття безлічі, уведене наприкінці минулого століття німецьким математиком Георгом Кантором (18451918), що позначає будь-яку сукупність об'єктів, що володіють деякою загальною властивістю. Тому Р. Фейджин і А. Хол скористалися поняттям безлічі для логічного визначення системи.

Система - це безліч об'єктів разом з відносинами між об'єктами й між їхніми атрибутами (властивостями).

Таке визначення не можна назвати коректним хоча б тому, що всілякі сукупності об'єктів можна назвати безлічами й для багатьох з них можна встановити певні стосунки між об'єктами, так що видова відмінність для систем (differentia specified), не зазначена. Справа, однак, не стільки у формальній некоректності визначення, скільки в його змістовній невідповідності дійсності. Справді, у ньому не відзначається, що об'єкти, що становлять систему, взаємодіють між собою таким чином, що обумовлюють виникнення нових, цілісних, системних властивостей. Очевидно, таке гранично широке поняття, як систему, не можна визначити чисто логічно через інші поняття. Його варто визнати вихідним і невизначуваним поняттям, зміст якого можна пояснити за допомогою прикладів. Саме так звичайно надходять у науці, коли доводиться мати справа з вихідними, первісними її поняттями, наприклад, з безліччю в математику або масою й зарядом у фізику.

Для кращого розуміння природи систем необхідно розглянути спочатку їхню будову й структуру, а потім їхню класифікацію.

Будова системи характеризується тими компонентами, з яких вона утворена. Такими компонентами є: підсистеми, частини або елементи системи залежно від того, які одиниці приймаються за основу розподілу.

- Підсистеми становлять найбільші частини системи, які мають певну автономність, але в той же час вони підлеглі й управляються системою. Звичайно підсистеми виділяються в особливим образом організовані системи, які називаються ієрархічними.

- Елементами часто називають найменші одиниці системи, хоча в принципі будь-яку частину можна розглядати як елемент, якщо відволіктися від їхнього розміру. Як типовий приклад можна привести людський організм, що складається з нервової, дихальної, травної й іншої підсистем, часто називаних просто системами. У свою чергу підсистеми містять у своєму складі певні органи, які складаються із тканин, а тканини - із клітин, а клітини - з молекул. Багато живих і соціальних систем побудовані по такому ж ієрархічному принципі, де кожний рівень організації, маючи відому автономність, у той же час підлеглий попередній, більше високому рівню. Такий тісний взаємозв'язок, взаємодія між різними компонентами забезпечують системі як цілісному, єдиному утворенню найкращі умови для існування й розвитку.

Структурою системи називають сукупність тих специфічних взаємозв'язків і взаємодій, завдяки яким виникають нові цілісні властивості, властивій тільки системі й відсутні в окремих її компонентів. У західній літературі такі властивості називають емерджентними, що виникають у результаті взаємодії й властиві тільки системам. Залежно від конкретного характеру взаємодії між компонентами ми розрізняємо різні типи систем: електромагнітні, атомні, ядерні, хімічні, біологічні й соціальні. У рамках цих типів можна у свою чергу розглядати окремі види систем. У принципі до кожного окремого об'єкта можна підійти із системної точки зору, оскільки він являє собою певне цілісне утворення, здатне до самостійного існування. Так, наприклад, молекула води, утворена із двох атомів водню й одного атома кисню, являє собою систему, компоненти якої взаємозалежні силами електромагнітної взаємодії. Весь навколишній нас мир, його предмети, явища й процеси виявляються сукупністю найрізноманітніших по конкретній природі й рівню організації систем. Кожна система в цьому світі взаємодіє з іншими системами.

Для більше ретельного дослідження звичайно виділяють ті системи, з якими дана система взаємодіє безпосередньо і які називають оточенням або зовнішнім середовищем системи. Всі реальні системи в природі й суспільстві є, як ми вже знаємо, відкритими й, отже, взаємодіючими з оточенням шляхом обміну речовиною, енергією й інформацією. Уявлення про закритий, або ізольованої, системі є далеко, що йде абстракцією, і тому що не відбиває адекватно реальність, оскільки ніяка реальна система не може бути ізольована від впливу інших систем, що становлять її оточення. У неорганічній природі відкриті системи можуть обмінюватися з оточенням або речовиною, як це відбувається в хімічних реакціях, або енергією, коли система поглинає свіжу енергію з оточення й розсіює в ній "відпрацьовану" енергію у вигляді тепла. У живій природі системи обмінюються з оточенням, крім речовини й енергії, також і інформацією, за допомогою якої відбувається керування, а також передача спадкоємних ознак від організмів до їхніх нащадків. Особливе значення обмін інформацією здобуває в соціально-економічних і культурно-гуманітарних системах, де він є основою для всієї комунікативної діяльності людей.

Loading...

 
 

Цікаве