WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаБанківська справа → Статистика - Курсова робота

Статистика - Курсова робота

Мода (Мо) – це значення варіанти, що найчастіше повторюється в ряду розподілу. Спосіб обчислення моди залежить від статистичного ряду. Для атрибутивних і дискретних рядів розподілу моду визначають візуально без будь-яких розрахунків за значеннями варіанти з найбільшою частотою. В інтервальному ряді спочатку визначається модальний інтервал (інтервал з найбільшою частотою) і значення моди в середині інтервалу розраховується за формулою:

де х0 – нижня межа модального інтервалу;

h – величина модального інтервалу;

f1, f2, f3 – частота відповідно перед модального, модального та після модального інтервалів.

Медіана (Ме) – варіанта, що ділить ранжируваний ряд на дві рівні за обсягом частини. Медіана для дискретного ряду з непарним числом варіант буде відповідати середній варіанті Ме = хm-1, де m – номер кратної варіанти першої половини ранжируваного ряду. Медіана для дискретного ряду з парним числом варіант буде відповідати середній із значень варіант у ранжируваному ряду: . Для інтервального ряду медіана обчислюється для середини медіанного інтервалу, за який приймається такий, де сума накопичених частот перевищує половину значень частот ряду розподілу. В даному випадку використовується така формула:

де х0 – нижня межа медіанного інтервалу; h – величина медіанного інтервалу; 0,5 ∑f – половина суми накопичених частот інтервального ряду; Sх0 – сума накопичених частот перед медіанним інтервалом; fm – частота медіанного інтервалу.

В аналізі закономірностей використовуються такі характеристики як квартилі та децилі. Квартилі – це варіанти, які поділяють обсяги сукупності на чотири рівні частини, децилі – на десять частин.

Показники варіації.

Після встановлення середньої величини (,Мо, Ме) виникає питання, в якій мірі індивідуальні значення ознаки відрізняються між собою та від середньої. Для цього розраховують показники варіації.

Варіацією ознаки називають різницю у числових значеннях ознак одиниць сукупності та їх коливання навколо середньої величини, що характеризує сукупність. Чим менша варіація, тим одноріднішою є сукупність і більш надійною (типовою) є середня величина.

До основних абсолютних і відносних показників, що характеризують варіацію, є такі: розмах варіації, середнє лінійне відхилення, дисперсія, середнє квадратичне відхилення, коефіцієнт варіації тощо.

Розмах варіації – це різниця між найбільшим і найменшим значеннями ознаки: R = xmax – xmin.

Величина показника залежить тільки від крайніх значень ознаки і не враховує всіх значень, що містяться між ними.

Досконалішим є визначення варіації через інші показники, які дають змогу усунути недолік розмаху варіації.

Середнє лінійне відхилення являє собою арифметичну з абсолютних значень усіх відхилень індивідуальних значень ознаки від середньої:

а) просте: ;

б) зважене:

Наявність абсолютних значень відхилень від середньої пояснюються ат: середня арифметична має нульову властивість, згідно якої сума відхилень індивідуальних значень ознаки зі своїми знаками дорівнює нулю; щоб мати суму всіх відхилень, відмінних від нуля, кожне з них слід брати за абсолютною величиною.

Основним недоліком середньоголінійноговідхилення є те, що в ньому не враховуються знаки відхилень, тобто їх спрямованість. Тому цей показник варіації використовується рідко. Дисперсія та лінійне квадратичне відхилення усувають недоліки середнього лінійного відхилення.

Дисперсією називають середню арифметичну квадратів відхилень індивідуальних значень ознаки. В залежності від вихідних даних дисперсія може обчислюватись за формулами середньої арифметичної простої або зваженої:

а) проста: ;

б) зважена: .

Дисперсія – це один з найбільш розповсюджених в економічній практиці узагальнюючих показників розміру варіації у сукупності. Дисперсію використовують не лише для оцінки варіації, а й для вимірювання зв'язків між досліджувальними факторами; розклад дисперсії на складові дозволяє оцінити вплив різних факторів, які обумовлюють варіацію ознаки.

Середнє квадратичне відхилення, як і дисперсія, виступає в якості широко використовуваного узагальнюючого показника варіації. Його обчислюють, здобувши квадратичний корінь з дисперсії:

а) просте:

б) зважене: .

Смислове значення середнього квадратичного відхилення таке саме, як і лінійного відхилення: воно показує, на скільки в середньому відхиляються індивідуальні значення ознаки від їх середнього значення. Перевага цього показника порівняно із середнім лінійним відхиленням полягає у відсутності умовного припущення з сумування відхилень без врахування їх знаків, бо відхилення використовують у квадратній степені. Крім зазначеного, перевагою даного показника у зрівнянні з дисперсією є те, що середнє квадратичне відхилення виражається в тих же одиницях вимірювання, що і значення досліджувальної ознаки. Тому цей показник називають також стандартним відхиленням.

В статистичній практиці часто виникає необхідність порівняння варіацій різних ознак. При таких порівняннях показники коливання ознак з різними одиницями вимірювання не можуть бути використані.

Для здійснення такого роду порівнянь, а також при зіставленні ознаки у декількох сукупностях з різними середніми арифметичними використовують відносний показник варіації – коефіцієнт варіації.

Коефіцієнтом варіації називають процентне відношення середнього квадратичного відхилення до середньої арифметичної величини ознаки:

Чим більший коефіцієнт варіації, тим менш однорідна сукупність і тим менш типова середня для даної сукупності. Встановлено, що сукупність кількісно однорідна, якщо коефіцієнт не перевищує 33%.

Дисперсія посідає особливе місце у статистичному аналізі соціально-економічних явищ і є важливим елементом статистичних методів, зокрема у дисперсному аналізі.

У структурованій сукупності, яка поділена на m груп за факторною ознакою х, загальна дисперсія σ2результативної ознаки у, може бути представлена складовими: між групова дисперсія δ2 та середня з групових дисперсій . Згідно з правилом розкладання дисперсій має місце рівняння:

.

Загальна дисперсія σ2 вимірює варіацію результативної ознаки в цілому за сукупністю під впливом усіх факторів, які обумовлюють цю варіацію. Загальна дисперсія для зваженої результативної ознаки y обчислюється за формулою: .

Між групова дисперсія δ2 характеризує варіацію ознаки y за рахунок фактора х, покладеного в основу групування, і розраховується за формулою: , де - відповідно середня j-ї групи та загальна середня варіюючої ознаки; - чисельність одиниць (частота) j-ї групи.

Для розрахунку середньої з групових дисперсій з початку обчислюється внутрішньо групова дисперсія, яка характеризує варіацію результативної ознаки за рахунок інших факторів, не врахованих у групуванні:

, де уj - значення ознаки окремих елементів сукупності.

Для всіх груп в цілому розраховується середня з групових дисперсій, зважених на частоти відповідних груп:

.

Користуючись правилом розкладання дисперсій, можна за двома відомими дисперсіями знайти третю – невідому, а також мати уяву про силу впливу групувальної ознаки.

Задача 13.

Продуктивність праці у звітному періоді підвищилась порівняно з попереднім періодом на 17% при плановому завданні 115%. Визначить виконання плану з росту продуктивності праці.

Розв'язання.

За наведеними даними ми можемо сказати, що у звітному періоді виконання плану становило 117%, бо базисний період у порівнянні зі звітним розраховують завжди як 100%. Таким чином ми маємо дані: фактичні дані виконання плану у звітному періоді (117%) і планове завдання звітного періоду(115%), тобто дві абсолютні величини.

Тепер нам необхідно знайти відносну величину – узагальнюючий кількісний показник, який виражає співвідношення порівнюваних абсолютних величин.

Loading...

 
 

Цікаве