WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаБанківська справа → Статистика - Курсова робота

Статистика - Курсова робота

Відносна величина структури.

Статистичні сукупності завжди структуровані і мають певні складові. Відносна величина структури характеризує склад, структуру сукупності за тією чи іншою ознакою і показує внесок складових сукупності до загальної маси. Вона визначається співвідношенням розмірів складових частин сукупності до загального підсумку. Скільки складових, стільки відносних величин структури. Вони визначаються простим чи десятинним дробом або процентом

Відносна величина координації.

Відносна величина характеризує структурованість сукупності. Відноснавеличина координації дає співвідношення різних структурних одиниць тієї самої сукупності і показує, скільки одиниць однієї частини сукупності припадає на 1, 100, 1000 і більше одиниць іншої, взятої за базу порівняння.

Відносні показники планового завдання та виконання плану.

Відносний показник планового завдання – відношення величини показника, встановленого на плановий період, до його величини, досягнутого за попередній період, який взято за базу зрівняння.

Відносний показник виконання плану являє собою відношення фактично досягнутого рівня до планового завдання.

Відносні показники динаміки (К), планового завдання (Кпз) та виконання плану (Квп) пов'язані між собою таким рівнянням: К = Кпз Квп.

Відносні величини порівняння.

Відносна величина порівняння у звичайному розумінні характеризує порівняння однойменних показників, що стосуються різних об'єктів, взятих за той самий період чи момент часу. Обчислюється у відносних величинах або процентах.

До цього виду відносних показників належать відносні величини просторового порівняння та відносні величини порівняння зі стандартом.

Відносна величина просторового порівняння – це відношення розмірів або рівнів однойменних показників за різними територіями чи об'єктами. Найчастіше це регіональні чи міжнародні порівняння показників економічного розвитку або життєвого рівня. Базою порівняння може бути будь-який об'єкт. Головне, щоб методика розрахунку порівнюваних показників була однаковою.

Відносна величина порівняння зі стандартом являє собою порівняння фактичних значень показників з певним еталоном – стандартом, нормативом, оптимальним рівнем. Такими відносними величинами порівняння є виконання договірних зобов'язань, використання виробничих потужностей тощо.

Відносна величина інтенсивності.

Відносна величини інтенсивності характеризує відношення різнойменних величин, зв'язаних між собою певним чином. Це – щільність населення на 1 кв. км, виробництво електроенергії на душу населення тощо. Якщо обсяги явища незначні відносно обсягів середовища, то їх співвідношення збільшуються у 100, 1000, 10000 і більше разів. Наприклад, показники народжуваності, смертності, шлюбності розраховуються на 1000 осіб населення, забезпеченість населення лікарями – на 10000 осіб населення, захворюваність та злочинність – на 100000 осіб населення.

Відносна величина диференціації.

Відносна величина диференціації обчислюється в результаті порівняння двох структурних рядів, один з яких характеризує співвідношення частин сукупності за чисельністю одиниць, а другий – за величиною будь-якої ознаки.

Середні величини.

Середньою величиною в статистиці називаються кількісний показник характерного, типового рівня масових однорідних явищ, який складається під впливом загальних причин і умов розвитку. У зв'язку з цим середні величини відносяться до узагальнюючих статистичних показників, які дають зведену, підсумкову характеристику масових суспільних явищ. В середній величині гасяться (розчиняються) всі відмінності та особливості індивідуальних значень ознак і вона є "рівнодіючою" значень цих ознак. Головними умовами застосування середніх величин є:

  1. наявність якісної однорідності сукупності;

  2. масовий характер даних сукупності, де діє закон великих чисел.

Залежно від характеру ознаки, що усереднюється, і наявності вихідної статистичної інформації в статистиці використовують декілька видів середніх, серед яких є найбільш поширені: середня арифметична, середня гармонічна, середня квадратична, середня геометрична. Поряд з переліченими видами середніх величин у статистичній практиці застосовують також середню хронологічну та структурні середні: моду і медіану. Використання того чи іншого виду середніх залежить від двох обставин:

  1. від характеру індивідуальних значень ознаки (прямі, обернені, квадратичні, відносні);

  2. від характеру алгебраїчного зв'язку між індивідуальними значеннями ознаки та її загального обсягу (сума, добуток, степінь, квадратичний корінь).

Кожна із зазначених видів середніх може виступати у двох формах: простої та зваженої. Проста середня застосовується при обчисленні середньої за первинними (не згрупованими) даними, зважена – за згрупованими даними.

При виконанні середніх величин використовуються такі позначення:

- середнє значення досліджувальної ознаки;

хі або х – кожне індивідуальне значення усереднюваної ознаки (варіанта) в варіаційному ряді;

fі або f – частота повторень (вага) індивідуальної ознаки в варіаційному ряді;

z = xf – обсяг значень ознаки;

n – кількість одиниць досліджуваної ознаки.

Середня арифметична.

Середня арифметична – це найпоширеніший вид середньої між інших. Вона застосовується тоді, коли відомі індивідуальні значення усереднюваної ознаки та їх кількість у сукупності. Тоді проста середня арифметична обчислюється діленням загального обсягу значень ознаки на обсяг сукупності:

Зваженасередняарифметична використовується у тих випадках, коли значення ознаки подано у вигляді варіаційного ряду, в якому чисельність одиниць у варіантах не однакова:

З формули видно, що середня зважена принципово не відрізняється від середньої простої арифметичної. Тут додавання f разів варіанти x змінюється множенням її на кількість повторень (f).

Середня гармонічна.

Середня гармонічна – це обернена до середньої арифметичної із обернених значень ознак. Її обчислюють, коли необхідно осереднення обернених індивідуальних значень ознак шляхом їх підсумування. У випадку розрахунку середньої гармонійної зваженої її обчислюють тоді, коли відомі дані про загальний обсяг ознаки (z = xf), а також індивідуальні значення ознаки (х), невідома частота (f). Формули мають такий вигляд:

- для простої

- для зваженої .

Середня квадратична.

Середня квадратична використовується для визначення показників варіації (коливання) ознаки – дисперсії та середнього квадратичного відхилення. Обчислюється на основі квадратів відхилень індивідуальних значень ознаки від їх середньої величини. Формула:

    • проста ;

    • зважена

Середня геометрична.

Середню геометричну застосовують у тих випадках, коли обсяг сукупності формується не сумою, а добутком індивідуальних значень ознак. Цей вид середньої використовується здебільшого для обчислення середніх коефіцієнтів (темпів) зростання в рядах динаміки. Так, у випадку однакових часових інтервалів між рівнями динамічного ряду середня геометрична проста має такий вигляд:

де - темпи зростання, yі, yі-1 – відповідно розглядаємий та попередній рівні ряду, n – кількість інтервалів.

Мода і медіана.

Середніми величинами в статистичних рядах розподілу є мода і медіана, які відносяться до класу структурних (позиційних) середніх. Їх величини залежать лише від характеру частот, тобто від структури розподілу. На відміну від інших середніх, які залежать від усіх значень ознаки, мода і медіана не залежить від крайніх значень Це особливо важливо для незакритих крайніх інтервалів варіаційних рядів розподілу.

Loading...

 
 

Цікаве