WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаБанківська справа → Депозитні операції в умовах інфляції - Курсова робота

Депозитні операції в умовах інфляції - Курсова робота

DOH3 = 3800 х 10 х 161 /36000 = 169,94 (грн.).

Загальний доход за ХХХХ рік по особистому рахунку складе 323 грн. 20 коп.

Спосіб 2. Заснований на визначенні середньодіючої (середньорічної, середньозваженої) процентної ставки. За аналогією зі середньодіючею сумою внеску, маємо:

PSср. = де

PSср. - середньодіюча процентна ставка.

Для нашого приклада вона склала:

PSср. = (%)

Шуканий доход складе:

DOH = 3800 х 8,505 /100 = 323,19 (грн.).

Різницю в розрахунках доходу 1-м й 2-м способами можна віднести за рахунок різного ступеня усереднення складових.

Приклад 5

Розрахувати доход клієнта за ХХХХ рік. Річна процентна ставка на момент відкриття особистого рахунку вкладника (PS 1 ) склала 14 % річних).

Стан особистого рахунку вкладника:

22.02. ХХ - відкриття особистого рахунку - 750 грн. (SUM1),

27.06. XX - додатковий внесок - 280 грн. (SUM2),

30.11. ХХ - зміна %-й ставки - 16 % річних (PS2).

Рішення засноване на визначенні доходів за інтервали часу, утворені записами особистого рахунку з урахуванням динаміки змін, що відбулися.

В задачі необхідно визначити доход вкладника за період з 22.02.ХХ по 31.12.ХХ із урахуванням того, що на особистому рахунку відбувалися зміни суми вкладу й процентної ставки.

Особистий рахунок розподілено на наступні інтервали часу:

1-й - з 22.02 по 27.06 (125 днів).

2-й - з 27.06 по 30.11 (153 дня),

3-й - з 30.11. по 31.12 (31 день).

Визначаємо доход за кожен інтервал.

DOH 1 =

DOH 2 =

DOH 3 =

Загальний доход складе:

DOH заг = 36,46 +61,29 + 14,19 = 111,94 (грн).

2.2 Метод складних відсотків

У складних відсотках доход у кожному розрахунковому періоді додається до суми вкладу попереднього періоду, а доход у наступному періоді обчислюється вже на нарощену величину вкладу. Цей спосіб іноді називають нарахуванням "відсотка на відсоток".

Позначимо SUMо первісний розмір внеску, вкладеного під складні відсотки на n років; SUMn - кінцевий розмір внеску. Розрахуємо, на яку величину зросте SUMо через n років при PS % річних і періоді нарахування доходу, рівному року.

По формулі обчислення простих відсотків (DOH = SUM х PS/100) наприкінці першого року одержимо:

Наприкінці другого року на отриману суму знову нараховуються прості відсотки:

Наприкінці третього року маємо:

Наприкінці n-го року маємо:

.......................................................(5)

Вираження r = 1 + PS/100 у світовій практиці називається складним декурсивним коефіцієнтом, а n-а ступінь складного декурсивного коефіцієнта називається коефіцієнтом нарощування.

Коефіцієнт нарощування для n періодів при РS % визначається по спеціальних фінансових таблицях. Фрагмент таблиці (1+PS/100)n представлений у таблиці 1.1. Шуканий коефіцієнт перебуває на перетинанні заданої процентної ставки, розташованої по горизонталі, і строку зберігання внеску, розташованого по вертикалі.

Таблиця 1.1

Коефіцієнти нарощування при складних відсотках

%

n

1

3

5

6

8

10

12

1

1.01

1.03

1.05

1.06

1.08

1.10

1.12

2

1. 0201

1. 0609

1. 1025

1. 1236

1. 1664

1.21

1. 2544

3

1. 0303

1. 0927

1. 1576

1. 1910

1. 2597

1. 331

1. 4049

4

1. 0406

1. 1255

1. 2155

1. 2625

1. 3605

1. 4641

1. 5735

5

1. 0510

1. 1592

1. 2763

1. 3382

1. 4693

1. 6105

1. 7623

6

1. 0615

1. 1941

1. 3401

1. 4185

1. 5869

1. 7716

1. 9738

7

1. 0721

1. 2299

1. 4071

1. 5036

1. 7138

1. 9487

2. 2106

8

1. 0829

1. 2668

1. 4775

1. 5938

1. 8509

2. 1436

2. 4760

9

1. 0937

1. 3048

1. 5513

1. 6895

1. 9990

2. 3579

2. 7731

10

1. 1046

1. 3439

1. 6289

1. 7908

2. 1589

2. 5937

3. 1058

11

1. 1156

1. 3842

1. 7103

1. 8983

2. 3316

2. 8531

3. 4785

12

1. 1268

1. 4258

1. 7959

2. 0122

2. 5182

3. 1384

3. 8960

13

1. 1381

1. 4685

1. 8856

2. 1329

2. 7196

3. 4523

4. 3635

14

1. 1495

1. 5126

1. 9799

2. 2609

2. 9372

3. 7975

4. 8871

15

1. 1610

1. 5580

2. 0789

2. 3966

3. 1722

4. 1772

5. 4736

16

1. 1726

1. 6047

2. 1829

2. 5404

3. 4259

4. 5950

6. 1304

17

1. 1843

1. 6528

2. 2920

2. 6928

3. 7000

5. 0545

6. 8660

18

1. 1961

1. 7024

2. 4066

2. 8543

3. 9960

5. 5600

7. 6900

19

1. 2081

1. 7535

2. 5270

3. 0256

4. 3157

6. 1159

8. 6128

20

1. 2202

1. 8061

2. 6533

3. 2071

4. 6610

6. 7275

9. 6463

Приклад 6.

Визначити, який доход принесе вклад у розмірі 500 грн. за 5 років вкладений під складні 8 % річних.

DOH = SUM5 - SUMо; SUM5 = 500 х 1,4693 = 735 (грн).

DOH = 735 - 500 = 235 (грн).

У світовій практиці річну процентну ставку називають ще номінальною. Відсотки можуть нараховуватися не тільки один, але й кілька разів у рік - по півріччях (доход нараховується 2 рази в рік), кварталам (доход нараховується 4 рази в рік), місяцям (доход нараховується 12 разів у році). Так, наприклад, номінальній процентній ставці 20 % відповідає піврічна 10 % (20/360 х 180), квартальна – 5 %, місячна - 1.67 %. Така ставка у світовій практиці має назву релятивної (відносної). Якщо номінальну процентну ставку зафіксуємо у величині PS, а число періодів нарахування відсотків протягом року - m, тоді щораз відсотки нараховуються по ставці PSo = PS/m. У цьому випадку кінцевий результат SUMmn за n років при m періодах розрахунку в році складе:

...............................................(6)

У загальному випадку відносну процентну ставку одержуємо по формулі:

....................................................................................(7)

Наприклад, річній процентній ставці 20 % буде відповідати наступна відносна процентна ставка за 85 днів:

PSв = 20 х 85 /360 = 4,72 (%).

Розглянемо приклад, що показує, які проблеми з'являються при використанні відносної процентної ставки:

У банк вкладено 1000 грн. під складні 12 % річних. Знайти кінцеву суму внеску через 5 років, якщо розрахунковий період:

а) рік (360 днів, m = 1, PS = PSв = 12);

б) півроку (180 днів, m = 2, PSв = 6);

в) квартал (90 днів, m = 4, PSв = 3);

а) SUM5 = 1000 • (1 + 12/100)5 = 1000 • 1,762 = 1762 (грн);

б) SUM10 = 1000 • (1 + 6/100)10 = 1000 • 1,790 = 1790 (грн);

в) SUM20 = 1000 • (1 + 3/100)20 = 1000 • 1,806 = 1806 (грн).

Для того, щоб одержати однаковий результат, використається так називана зрівнювальна процентна ставка.

Зрівнювальною процентною ставкою називається така ставка, при якій первісний вклад при m розрахунках у році й річному розрахунку зростає однаково.

Визначимо співвідношення між зрівнювальною ставкою і номінальною.

Виходячи з визначення зрівнювальної процентної ставки, можна записати:

де PSв – зрівнювальна процентна ставка.

Тоді,

звідси:

Тепер можна визначити піврічну (m=2), квартальну (m=4), місячну (m=12) і денну (m=H) процентну ставку, якщо відомо номінальна (річна).

Піврічна зрівнювальна %-а ставка:

.......................................................(8)

Квартальна зрівнювальна %-а ставка:

...........................................................(9)

Loading...

 
 

Цікаве