WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаАстрономія та Авіація → Сучасна космологія - Курсова робота

Сучасна космологія - Курсова робота

Коли ми говоримо про Всесвіт, нас в першу чергу цікавить розподіл речовини в найбільших масштабах і її рух. Значить, нам належить побудувати математичну модель, що описує розподіл речовини в просторі і його рух. Що стосується розподілу речовини у великих масштабах, то, як вже було сказано, його можна з хорошою точністю вважати однорідним по простору. Немає у Всесвіті і яких-небудь виділених напрямів. Як то кажуть, наш Всесвіт однорідний і ізотропний. Що визначає рух речовини в космічних масштабах? Звичайно ж, це, в першу чергу, сили всесвітньою тяжіння — вони очолюють у Всесвіті. Їх називають також силами гравітації.

Отже, для побудови моделі Всесвіту необхідно скористатися рівняннями тяжіння. Закон всесвітнього тяжіння був встановлений І. Ньютоном. Його справедливість підтверджувалася протягом століть найрізноманітнішими астрономічними наглядами і лабораторними експериментами. Проте А. Эйнштейн показав, що закон тяжіння Ньютона справедливий лише в порівняно слабких полях тяжіння. Для сильних же полів необхідно застосовувати релятивістську теорію гравітації — загальну теорію відносності. Які ж поля слід вважати достатньо сильними? Відповідь така: якщо поле тяжіння розгонить падаючі в ньому тіла до швидкостей, близьких до швидкості світла, то це сильне поле. Яка сила гравітаційного поля у Всесвіті? Легко показати, що поля там повинні бути величезними.

А.А. Фридман скористався для побудови моделі Всесвіту рівняннями Ейнштейна. Проте багато років опісля з'ясувалося, що для побудови механіки руху мас в однорідному Всесвіті немає необхідності використовувати найскладніший математичний апарат теорії Ейнштейна. Це було показано в 1934 р. Э. Милном і В. Маккрі. Причина цієї дивної можливості полягає в наступному. Сферично-симетрична матеріальна оболонка не створює ніякого гравітаційного поля у всій внутрішній порожнині.

Тепер звернемося до розгляду сил тяжіння у Всесвіті. У великих масштабах розподіл речовини у Всесвіті можна вважати однорідним. Розглянемо спочатку сили тяжіння, створювані на поверхні кулі тільки речовиною самої кулі, і поки не розглядатимемо всю решту речовини Всесвіту. Хай радіус кулі вибраний не дуже великим, так що поле тяжіння, створюване речовиною кулі, відносно слабке і застосовна теорія Ньютона для обчислення сили тяжіння. Тоді галактики, що знаходяться на граничній сфері, притягуватимуться до центру кулі з силою, пропорційній масі кулі, і обернено пропорційної квадрату його радіусу.

Тепер пригадаємо про всю решту речовини Всесвіту зовні кулі і спробуємо врахувати сили тяжіння, ним створювані. Для цього розглядатимемо послідовно сферичні оболонки все більшого і більшого радіусу, охоплюючі кулю. Але, як було сказано вище, що сферично-симетричні шари речовини ніяких гравітаційних сил усередині порожнини не створюють. Отже, всі ці сферично-симетричні оболонки (тобто вся решта речовини Всесвіту) нічого не додадуть до сили тяжіння, яке випробовує галактика на поверхні кулі до його центру. Такий же висновок справедливий в загальній теорії відносності. Тепер ясно, чому для виведення законів руху мас в однорідному Всесвіті можна скористатися теорією Ньютона, а не Ейнштейна.

Ми вибрали кулю достатньо малим, щоб була застосовна теорія Ньютона для обчислення гравітаційних сил, створюваних його речовиною. Маси решти Всесвіту, що оточують кулю, на сили гравітації в даній кулі ніяк не вплинуть. Але ніяких інших сил в однорідному Всесвіті взагалі ні. Дійсно, це могли б бути тільки сили тиску речовини. Але навіть якщо тиск є (а у далекому минулому тиск у Всесвіті був величезним), то воно не створює гідродинамічної сили. Адже така сила виникає тільки при перепаді тиску від місця до місця. Пригадаємо, що ми не відчуваємо ніякої сили від великого тиску нашої атмосфери через те, що усередині нас повітря створює точно такий же тиск. Ніякого перепаду немає — немає і сили. Але наш Всесвіт однорідний. Значить, у будь-який момент часу і густина, і тиск (якщо воно є) скрізь однакові, і ніякого перепаду тиску бути не може.

Отже, для визначення динаміки речовини нашої кулі істотне тільки тяжіння його маси, визначуване по теорії Ньютона. Але Всесвіт однорідний. Це значить, що всі області її еквівалентні. Якщо визначити рух речовини в даній кулі, можна знайти, як міняються в ньому густина, тиск, то тим самим знайдемо зміну цих величин і в будь-якому іншому місці, у всьому Всесвіті.

Перша космологічна модель всесвіту - модель Ейнштейна

Перша космологічна модель була побудована А. Ейнштейном в 1917 р. незабаром після створення ним Загальної теорії відносності. Як і все тоді, він вважав, що Всесвіт повинен бути стаціонарна, вона не може направлений еволюціонувати. Ця модель створювалася більш ніж за десять років до відкриття Е. Хаббла. А. Ейнштейн, мабуть, нічого не знав про великі швидкості деяких галактик, які на той час вже були зміряні. До того ж у той час не було ще надійних доказів, що галактики — дійсно далекі зоряні системи. Висловлюючи свою Модель, Ейнштейн писав: "найважливіше зі всього, що вам відомо з досвіду про розподіл матерії, полягає в тому, що відносні швидкості зірок дуже малі в порівнянні з швидкістю світла. Тому я вважаю, що на перших порах в основу наших міркувань можна покласти наступне наближене допущення: є координатна система, щодо якої матерію можна розглядати тією, що знаходиться протягом тривалого часу у спокої".

Виходячи з таких міркувань, Ейнштейн ввів космічну силу відштовхування, яка робила світ стаціонарним. Ця сила універсальна: вона залежить не від маси тіл, а тільки від відстані, що їх розділяє. Прискорення, яке ця сила повідомляє будь-які тіла, що рознесли на відстань, повинно бути пропорційно відстані. Сили відштовхування, якщо вони, звичайно, існують в природі, можна б було знайти в достатньо точних лабораторних дослідах. Проте крихта величини робить задачу її лабораторного виявлення абсолютно безнадійної. Дійсно, це прискорення пропорційне відстані і в малих масштабах нікчемне. Легко підрахувати, що при вільному падінні тіла на поверхню Землі додаткове прискорення в 1030 разів менше самого прискорення вільного падіння. Навіть в масштабі Сонячної системи або всієї нашої Галактики ці сили нікчемно малі в порівнянні з силами тяжіння.. Зрозуміло, це відштовхування ніяк не позначається на русі тіл Сонячної системи і може бути знайдене тільки при дослідженні рухів самих найвіддаленіших спостережуваних галактик.

Так, в рівняннях тяжіння Ейнштейна з'явилася космологічна постійна, описує сили відштовхування вакууму. Дія цих сил така ж універсальна, як і сил всесвітнього тяжіння, тобто воно не залежить від фізичної природи тіла, на якому виявляється, тому логічно назвати цю дію гравітацією вакууму.

Через декілька років після роботи Ейнштейна, А. А. Фридманом була створена теорія Всесвіту, що розширяється. А. Эйнштейн спочатку не погоджувався з виведеннями радянського математика, але потім повністю їх визнав.

Після відкриття Э. Хабблом розширення Всесвіту які-небудь підстави припускати, що в природі існують космічні сили відштовхування, здавалося б відпали.

"Порожній" Всесвіт

Що буде, якщо зі Всесвіту прибрати всю речовину? На перший погляд здається, що така операція абсолютно абстрактна і одержувана модель відповідатиме лише уяві теоретиків. Але це зовсім не так і нічого фантастичного або тим більше наївного в такій операції немає. В історії Вселеної, мабуть, був період, коли вона була практично порожня, вільна від звичайної фізичної матерії, і модель порожнього Всесвіту описувала тоді її еволюцію.

Вперше модель порожнього Всесвіту була побудована голландським астрономом В. де Ситтером в 1917 р. Віллем де Ситтер був, якщо так можна виразитися, "класичним астрономом". Він багато займався точним визначенням положення зірок на небі, небесною механікою, був одним з піонерів масових фотометричних наглядів зірок. Протягом десятиріч він вивчав рух супутників Юпітера, створив теорію цього руху, яку користуються дотепер. В. де Ситтер відразу оцінив те величезне значення, яке теорія Ейнштейна повинна мати в астрономії взагалі і в космології особливо. Модель Вселеної де Ситтера була опублікована в той же рік, що і модель Ейнштейна, і обидві ці моделі можна вважати першим досвідом вживання Загальної теорії відносності в космології.

Отже, слідуючи де Ситтеру, приберемо зі Всесвіту всю речовину. Помістимо в наш порожній Всесвіт дві вільні пробні частинки на відстані один від одного. Частинки називаються пробними, оскільки передбачається, що їх маси достатньо малі, щоб не впливати на їх відносний рух, а вільними вони називаються тому, що на них не діє ніяка сила, окрім гравітації. У Всесвіті це можуть бути, наприклад, дві галактики, розташовані достатньо далеко один від одного. Тоді негативна гравітація примушує обидві галактики рухатися один від одного з прискоренням, пропорційним відстані. Якщо по прискоренню знайти швидкість, а потім зміну відстані з часом, то легко показати, що відносна швидкість частинок-галактик стрімко наростатиме.

Таку залежність називають експоненціальною, вона виражає надзвичайно швидке зростання відстані від часу. Якій же можна зробити висновок? В "майже порожньому" Всесвіті, тобто в такій Вселеній, в якій можна нехтувати звичайним тяжінням галактик один до одного, галактики можуть придбати великі швидкості видалення один від одного. Такий висновок одержав де Ситтер в 1917 р. В цей час йому були відомі швидкості тільки трьох галактик, і він не міг прийти до якого-небудь певного висновку про справедливість своєї теорії. До сьогоднішнього Всесвіту модель де Ситтера навряд чи застосовна: динаміка Всесвіту визначається звичайним тяжінням речовини. Але ця модель виявилася важливою для опису далекого минулого Всесвіту, коли вона тільки починала розширятися.

Loading...

 
 

Цікаве